FASC. 1

SMALL SETS IN THE SUPPORT OF A FOURIER-STIELTJES TRANSFORM

RV

LOUIS PIGNO (MANHATTAN, KANSAS)

Let T be the circle group and M(T) the usual convolution algebra of finite Borel measures on T. The Fourier-Stieltjes transform of $\mu \in M(T)$ is the function $\hat{\mu}$ defined on the integers Z by

$$\hat{\mu}(n) = \int_{T} e^{-in\theta} d\mu(\theta).$$

Write $M_0(T) = \{ \mu \in M(T) : \hat{\mu} \in C_0(Z) \}.$

In [1], Graham has proved the following result:

Suppose that $\mu \in M(T)$ and that for each $\varepsilon > 0$ the set

$$S_{\bullet} = \{n \in \mathbb{Z} \colon |\hat{\mu}(n)| \geqslant s\}$$

is Sidon. Then $\hat{\mu} \in C_0(\mathbf{Z})$.

Actually, Graham proves this result under the milder condition that S, satisfies, for some fixed $N \in \mathbb{Z}^+$,

(#)
$$\sup \left\{ \min(|A_1|, |A_2|, \dots, |A_N|) \colon A_1 + A_2 + \dots + A_N \subset S_{\epsilon} \right\} < \infty$$
 for every ϵ .

A subset $E \subset Z$ is said to satisfy lacunarity condition (\mathcal{L}) if for every infinite sequence $\langle m_i \rangle_1^{\infty} \subset Z$

$$\lim_{i} \{E - m_i\}$$

is finite.

Any set E satisfying

$$\sup \left\{ \min \left(|A|, |B| \right) : A + B \subset E \right\} < \infty$$

evidently satisfies lacunarity condition (\mathcal{L}). Thus every Sidon set satisfies lacunarity condition (\mathcal{L}) (see López and Ross [2], p. 8). Furthermore, any set $E = \{n_1 < n_2 < \ldots\} \subset \mathbb{Z}^+$, satisfying the gap condition

$$\lim_{k\to\infty}(n_{k+p}-n_k)=\infty$$

for some fixed $p \in \mathbb{Z}^+$, satisfies lacunarity condition (\mathscr{L}). We prove the following generalization of [1] (our method is quite different from that of Graham):

THEOREM. Let $\mu \in M(T)$ and suppose that for every $\varepsilon > 0$ the set S_{\bullet} satisfies lacunarity condition (\mathcal{L}) . Then $\hat{\mu} \in C_0(Z)$.

Proof. Suppose that $\hat{\mu} \notin C_0(\mathbf{Z})$. We shall force a contradiction: There exists an $\varepsilon_0 > 0$ such that

$$\left|\left\{n\in Z\colon |\hat{\mu}(n)|\geqslant \varepsilon_0\right\}\right| = \infty.$$

Let $0 < \varepsilon < \varepsilon_0$ be given. Then the set S_ε contains S_{ε_0} . Let $\langle m_j \rangle_1^\infty$ be any infinite sequence contained in S_{ε_0} . Let v be any weak-* cluster point in M(T) of $\exp[-im_j]d\mu$. Assume without loss of generality that $\exp[-im_j]d\mu$ converges weak-* to v in M(T). By the Helson Translation Lemma ([4], p. 66),

$$(1) v \in M_0^{\perp}(T),$$

where $M_0^{\perp}(T) = \{\omega \in M(T) : \omega \perp \varrho \text{ for each } \varrho \in M_0(T)\}$. Observe that

$$|\hat{\mathbf{r}}(0)| \geqslant \varepsilon_0 > 0.$$

Inasmuch as

$$\frac{\lim_{j} \{S_{\bullet} - m_{j}\}}{j}$$

is finite, we gather that $|\hat{v}(m)| < \varepsilon$ for all $m \in \mathbb{Z}$ outside a finite set. Thus

$$(3) v \in M_0(T).$$

As a consequence of (1) and (3) we may conclude that $\nu = 0$. However, this contradicts (2). The proof is complete.

Comments. (i) An analogue of our Theorem is valid for any non-discrete compact abelian group.

- (ii) A simple Riesz product argument shows the existence of a $\mu \in M(T)$ such that each S_{\bullet} is a $\Lambda(1)$ -set and $\hat{\mu} \notin C_{\bullet}(Z)$.
- (iii) The author has recently obtained a quantitative generalization of the main result of this paper:

Let E satisfy lacunarity condition (L). Then, given s>0, there exists a $\delta>0$ such that if $\|\mu\|<1$ and

$$\limsup_{n\notin E}|\hat{\mu}(n)|<\delta,$$

then

$$\limsup_{n\in E}|\hat{\mu}(n)|\leqslant \varepsilon.$$

The relation of δ to ε is as follows: Given $\varepsilon > 0$, choose $r \in \mathbb{Z}^+$ $(r \ge 31)$ such that $r^{1/2}/4 \ge 1/\varepsilon$. Then $\delta = \varepsilon e^{-r}/2$. Notice that δ does not depend on the Sidon constant of E if E is a Sidon set. For a proof of this result the reader is referred to [3].

(iv) We say that $E \subset \mathbb{Z}$ satisfies lacunarity condition (\mathcal{L}_1) if it satisfies lacunarity condition (\mathcal{L}) . Having defined lacunarity conditions (\mathcal{L}_i) , i = 1, 2, ..., N, we say that E satisfies lacunarity condition (\mathcal{L}_{N+1}) if for every infinite sequence $\langle m_i \rangle_1^{\infty} \subset \mathbb{Z}$ the limit

$$\frac{\lim_{j} (E - m_j)}{m_j}$$

satisfies lacunarity condition (\mathcal{L}_N) . Simple modifications in the proof of our Theorem yield the following result:

Suppose $\mu \in M(T)$ and $N \in \mathbb{Z}^{\diamondsuit}$. If for every $\varepsilon > 0$ the set

$$S_{\bullet} = \{ m \in \mathbb{Z} : |\hat{\mu}(m)| \geqslant \varepsilon \}$$

satisfies lacunarity condition (\mathcal{L}_N) , then $\hat{\mu}$ vanishes at infinity.

Notice that any set S_{\bullet} satisfying (#) satisfies lacunarity condition (\mathcal{L}_{N}) .

REFERENCES

- [1] C. C. Graham, Non-Sidon sets in the support of a Fourier-Stieltjes transform, Colloquium Mathematicum 36 (1976), p. 269-273.
- [2] J. M. López and K. A. Ross, Sidon sets, New York 1975.
- [3] L. Pigno, Transforms which almost vanish at infinity, Mathematical Proceedings of the Cambridge Philosophical Society 87 (1980), p. 75-79.
- [4] W. Rudin, Fourier analysis on groups, New York 1962.

KANSAS STATE UNIVERSITY MANHATTAN, KANSAS

> Reçu par la Rédaction le 13.7.1978; en version modifiée le 22.9.1978