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ON LEJA-GORSKI APPROXIMATIONS
IN THE SPATIAL DIRICHLET'S PROBLEM

BY

W. KLEINER (CRACOW)

1. Let R® be the cartesian linear space of points # = [z, 2*, 2°],
#* being real numbers (i =1, 2, 3). We write |z = (s'2'+ 2’2 + 2°°)'/*
o(x, A) = inf{jx—y|: ye A = R*}. Let F be a smooth surface in R* divid-
ing it into two domains, D and D, D bounded. Let f(x) be a real conti-
nuous function of x¢F and u(z, f) the solution of the following Dirichlet’s
problem: find a % continuous for #eR?® v {oo} and such that u(x, f) = f(x)
(veF), u(oo,f) = 0and du = 0 in D u D,,. The extremal points method
provides an effective sequence %, = U “(z)+b, — u(x,f)(xeD). We
have proved in [7] that under suitable assumptions w,—u = O(n~')
locally uniformly in D. In the present paper a sharper estimate
#,—u = O(n~"*) is obtained under less restrictive assumptions and by
a simpler argument. We refer to [1], [2], [6], [7] for more details about
the notions used in this note and for some lemmas.

2. Let u, v be any measures. We use classical and special potentials
and energies, defined as follows:

1
@) = [ e @), (w0 = [ U, Ll = 0,

1
vie) = [ () du), (o= [Tl lwlh = (s e

The sign “,” denotes that the definition of the integrand is completed
by putting it equal to 0 when = = y.

(4,v) and (u,v), are symmetric bilinear forms. |u|[* > 0, even for
signed measures, with the sole exception for x = 0 [2]. This implies
(s, »)] <ljull-|vl|. Last symbols denote, of course, square roots of
energies. In this connection, see [1].

U" etc. are primarily destined for measures with atoms.

(1)

3. For a reason given in [7], and which appears also from the present
gsection 4, we call a continuous function f(x) (x<F) solvable (in the sense



116 W. KLEINER

of Siciak, [10]), if it can be written in the form f(z) = U~*(z)+b (¢
a positive measure on F with ¢(F) =1, b a constant). Then

(2) w@,f) = U™*(@)+b (zeD).
If f is any Lipschitz function, i.e. if
(3) If (@) —f(@e)| < clXy—a| (2, %y¢F, ¢ a constant),

then there exists a positive number A, such that for 41¢<0, 4,> the func-
tion Af is solvable ([5], as interpreted by [7]). The general case of
a Lipschitz f is thus reduced to that of f being both Lipschitz and solvable.
We proceed under these assumptions. By a theorem given in [3], p. 213,
u(x, f) and consequently U~® is then Lipschitz, i.e.

(4) [u(@1, f) — (@) /)l < ql0y—a2| (@1, 7,¢R? ¢ & constant)

provided F is a C? surface (or, more generally, a Liapounoff one).

4. Leja’s extremal measure o, is defined as an atomic measure with
a mass 1/n on each of n different points ¢; = ¢;,_,eF (¢ =0,1,...,n—1),
which are chosen so as to give the minimal value to the expression

t n
(5) 1,2 2 joi+2 [ fio,

n-1
n 1 1 1
=33 =42 D fle)
n—1 o |e,-—ek| nd — n

We have

o 1 1
(6) UTne) = = D > UTe)  (#(P).
i-0 *

The formula for b in (2) may be
n

(7) by —>b, b, = —— |+ [ fdo,

n—1
(for explanation, compare with (5)). These results are essentially due to
Gorski [4, 5]; see also [7]).

5. We will prove the following theorem:
THEOREM. Let f be a solvable Lipschitzian function on FeC? Then

V2(1+q) _y4

(8) U (2)—U*(@)| < ——n (@eD o Dy, r = o(, F),
Vr
n > (2/7)2)7
(9) b —b| < (1+2q)n" "2 +|g|V1+g-n"""  (for any n),

where q is the constant from (4).
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6. Proof. Let y,, be the measure of mass 1/n spread uniformly
on the sphere 9B;, B; = {x: l[v—e;} <n "} (1 =0,...,2—1) and 9y,
= Yon+ Pimn+-..+ ¥a_1n. It was shown in [7], section 8 ((8.4) combined
with (6.4)), that

(10) lyn—ol' <Q+g)n™"*  (n=2,38,...).

Let zyeD o D, and let y be the measure of mass 1, spread uniformly
on the sphere 0B, B = {x: |[x—x,| < ¥}, r from (8). Let n > (2/r)2
Then the potentials below are harmonic in B v 9B, and so their values
at x, are equal to their spherical means on 9B, i. e. to their integrals with
respect to y:

| U= (@) — U~ (mo)| = | [U°~*ndy| = |(p— pn, 7)]
< llo—vall- 7] = llp—wall(r/2)712 < (14 @)*n= "4 (r[2) 7",

where the last inequality holds by (10); so (8) is proved.

To obtain (9), integrate (2) with respect to ¢. This yields b = I —
— fudp, where I = |¢p|*+2 [udp. By (7) and (5), b, = I,— [udo,.
Remember that v = f on F. We have proved in [7], section 14, that

(11) 0<I-I,<(1+gn™ (n=2,3,...; ¢ from (4)).
Thus, it remains to estimate [udy— [udo,. Now, by (4),
(12) | [udy,— [udo, | = | [u(@, Nd(p,—a,)]

= ]2f{u(ei,f)—uw,f)}dml < Y [alei—aldpim = qn'",
and by (2) and (10)
(13) | fut@, Hag— [u(@, Hap, =|[ U *d@—p,)

= (=@ 9— )| <lipll* llya—oll < lipll(1+ ) *n=".

(11), (12) and (13) give us (9), and the proof is completed.

7. To obtain from (8) and (9) numerical bounds, we ought to know ¢
and |lpl. Now, by (2), lgl* = [U’dp = [(b—f)dp <b—inff, so by (9)
(14) lpl* < by —inff+(14-2¢)n~ "+ (14 ¢)*n =" .

When solving this inequality for ||p|, we obtain an effective bound
for it in terms of f and ¢. So we raise a question, connected also with
another one, relative to the density of ¢, proposed in [9]:

P 549. Give a bound for ¢ in (4) in terms of F and f only.
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8. The derivatives also converge as n~"%, This is easily seen by

Poisson’s formula. Indeed, let ¢(x,, F') = r > 0 and n > (4r)~2 as in (8).
Denote by y the uniform unit measure on {y:|y—a, = 4r}. Let U
= U°»—U®, let D denote the differentiation in any fixed direction and 6
the angle of y— x, with this direction. Then by (8)

|?/_wo|2— | — wo|2

@) Ul = |[ v [PE s

<f|U(y)||—3(1}r)“2coseldy < constr—3n~4,

9. As pointed out in [7], the extremal points method works in the
N-dimensional space (N > 4) as well. In (1), 1/|Jx—y| is to be replaced
now by 1/jJx—y|¥ %, and analoguous changes are to be introduced into
(5) and (6). The radii of Bs (section 6) are now n -1 go |y’
=n~NEP-D and we get |y.—olf = (1+q)n " Y?-Y instead of (10).
Thus we have

THEOREM. In the space RY (N > 3), for FeC? and any Lipschitzian
solvable f,

VoV (14 q) n=V2N=1)
YrN-2
(xeD v Dy, r = o(x, F), n > (Z/r)N—l)’

(16) [T~ (0)— U~%(w)| <

(17) lbn—b[ < (1_|_2q)n—l/(N—l)+ ||<P]|1/1+q'n_l/2(N—1)
(n=2,3,..))

10. Put
k = k, = 1/(average distance between extremal points)
= n/Z,;Q(Gi, {eq}q;éi) (eq = eq,n_l)°

The bounds both in (16) and (17) are O(k~'?). In this sense, the
degree of convergence of the extremal points method does not depend
on the dimension N, with a sligth exception for N = 2 — in this case
we get O(k~'"2logk) [8].
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