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1. Introduction. A triple (M, @, Q) is called a lift space of class CF,
k>0 (see [2]) if M is a connected and paracompact C*-manifold, @ is
a Lie group and @ is a C*-map from TM into G (the Lie algebra of G).
The lift space (M, @, Q) is called linear if @ is linear on each fibre of 7M.

Suppose we are given a lift space (M, G, @). For any piecewise C'-path y,,
t € [a, b], in M, the lift of y with origin g €@ is the unique path 3(g, t),
t e [a, b], in G such that

1) ¥(g,1) =Q)7(9,t), ¥(g,e) =g

(for the.existence, see [3], p. 69). The lift space (M, G, Q) is called flat
(locally flat) if the lift with origin e (e is the unit of @) of any closed piecewise
C'-path (of any closed piecewise C'-path homotopic to zero) is closed.
The holonomy group |Kg,| (the restricted holonomy group |Kg |) at
p € M is the subgroup of G generated (algebraically) by all elements of
the form ¥%(e, b), where y,, t€[a,b], are piecewise C'-loops (piecewise
C'-loops homotopic to zero) at p. For any p € M, the well-defined set

2) Q(M,p) = \J #%e, 1) |Kq |
qeM

(where 97, t € [0, 1], is any piecewise C'-path joining p to q) is called the
holonomy bundle at p.

In [2] it is proved that the holonomy group of a lift space (M, G, Q)
of class C%, k> 0, at p € M is a Lie subgroup (with countably many com-
ponents) of @ and the restricted holonomy group at p is its identity com-
ponent ([2], Proposition 1), while the holonomy bundle at p is a reduced
C*+! principal fibre subbundle of M x @ ([2], Corollary 5).

The Lie algebra of '|K, ,| is called the holonomy algebra at p e M
and is denoted by kg ,.

In Section 3 of this paper we prove that the holonomy groups and
holonomy bundles may be defined by using only piecewise C™-paths.
This may be viewed as a generalization (in some sense) of a result due to
Nomizu and Ozeki [4].
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Section 4 contains some infinitesimal factorization property for lift
spaces.

By a theorem of Ambrose and Singer [1], the holonomy algebra
kq,p of a linear lift space (M, @, @) of class C* is equal to the subspace
of G induced by the curvature form of the corresponding connection
T (see [2], Remark 4) on Q (M, p). There arises a natural question of the
existence of a “curvature” for any lift space of class C%, k > 0 (not neces-
sarily linear), which measures its deviation from local flatness.

In Section 5 we give an affirmative answer to this question (Propo-
gition 3). Namely, we define a certain curvature quantity for arbitrary
lift spaces of class O%, k > 2, which satisfies a generalization of the Am-
brose and Singer result. In particular, its vanishing is equivalent to local
flatness.

Throughout this paper, for a left Lie group action G XM — M we
use the notation

d
Xp=§t— exp(tX)p, peM,Xeq.
t=0

A gimilar convention is adopted for right actions. For Lie subgroups
L c K and K c @ we shall denote the natural projection G — G /K (the
set of lgft cosets) by gk, while the induced map G/L — G/K will always
be denoted by pr. The set of all C* cross-sections of a €' vector bundle V
over M (k<1) will be denoted by I'*(V). .

The author wishes to thank Dr. A. Derdzingki for conversations,

2. Preliminaries. Let (M, @, Q) be a lift space of class C* k> 0.
In the sequel we shall need the following lemmas:

LEMMA 1 (see [2], Proposition 3 and Corollary 4). Let p € M. Then:
(i) There ewists a wnique O**'-map Py ,: M —G[| Ky ,| such that
(B)  (Pg,ple(v) = Q(’”) Po,»(q) for qe M, veT M, By ,(p) =¢|xo,p|(3)-
(ii) Let K be a Lie subgroup of G. If there exists a differentiable map
P : M -G /K which satisfies (3), then |Kg,| =« K, ® = prdgy, and
(4) PD(7) = gx¥(6,1), tela,bd],

for any piecewise 0?-1')ath v, t € [a, b], in M started from p.
LEMMA 2 (see [2], (ii) of Proposition 4). The holonomy bundle Q (M, p)
at p € M is equal to the resiriction of the principal fibre bundle
idy X ¢irg 1t M XG> M x(GKg,pl)

to the graph of the map Dg ,.
LEMMA 3 (see [2], Lemmas 6 and 7). Let p € M and (g, g) € Q(M, p).
Then
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(1) ad(g) | Kq,p| = |Kq,qly
(i) Q(M, p)g~" = Q(M, g).
By the holonomy algebra bundle [2] we mean the set

ko (M) =:qy‘ {g} X Kq,q-

LeMmA 4 (see [2], Corollary 6). The holonomy algebra bundle ko(M)
i¢ a C**! vector subbundle of M x G.

A piecewise O'-path (y,, %), t €[a, b], in M x@ is called horizontal
[2] if y; = ¥(g,t) for some g €e@. A vector tangent to M X G is called
horizontal if it is tangent to a horizontal path. The set of all horizontal
vectors will be denoted by 7. In view of (1), the set of all horizontal
vectors at (q, g) € M X @ is given by

(6) y T2 = {(v,@(v)g): v e T M}.

Let p € M. By (2), M X @ is a disjoint union of right cosets Q (M, p)g,
g € G. Define a distribution D° on M x @ by setting
(6) -D(Qq,a) = T(q,g)(Q(M’ p)gl)y

where (g, g) € Q (M, p)g, for g, € G- By (ii) of Lemma 3, D® does not depend
on the choice of p € M and D, = D{ .9, (¢, 9) € M X G.

LEMMA 8. The distribution D° is of class C* and
(7 Dy = Ton+¥eeds (4,9) € MG

Proof. Fix a point p € M. Using local C**! cross-sections
II,: U;> ¢ » (g, m(q) € Q(M, p)
of the bundle @ (M, p), we have

D¢y = (Taye(Q(M, p))m(g)'g  for (g,9) € U;xG.

Since Q(M, p) is a O**'-submanifold of M x @, D9 is of class C.

Now, let & = (y;, 8,), t e [—1,1], be a (*-path in Q(M, p) and let
éo = (p, €). Then there exists a C'-path s,,t e [—1,1], in |Kg ,| such that
ﬂ! = (e, t)8, for each t € [—1, 1]. Hence, by (1) and the Leibniz formula,
&0 = (70, @ (7o) + &), 80 that DY, = T¢, . +%q,, Which implies (7). This
completes the proof. '

Lemma 6. Let &, te[a,b], be a piecewise C'-path in M xG and let
& =1(aq,9). If ;’, € D for each t e [a,b], then the entire path &, lies in
Q(M, q)g. .

Proof. Let & = (v, B,9),t € [a, b]. By (2), we have only to show
that 8, = 7(e,t)™' ;€ |Kq 4| for ¢ e [a,b]. In fact, applying the Leibniz
formula to the path B;, we have

B = (e, 1) 8+ 7 (6, 1) 6, = Q) B+ 7 (6, 1) dy.

8 — Colloquium Mathematicum XLIV.2
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By (7), we obtain (e, )8, € kq,,,f;- In view of (i) of Lemma 3 we get
kogubi = 7(6,1) kg o8, Thus §, € kg .8, and we obtain s, € |Kg g, t € [a, b],
since 8, = 6. This completes the proof.

LEMMA 7. Let pe M, v,,v,,veT,M and a € R. Then the veclors
Q (v, +v5) —Q(v,) —Q(v,) and aQ(v) —Q(av) belong to kg ,.

Proof. By (6) and Lemma 5, D@, = {(v,Q(v)+X): veT,HM,
X ekgy,p} is a vector subspace of T, M x G, which immediately implies our
assertion.

3. Paths used in the definition of holonomy groups. Let (M, &, Q)
be a lift space of class C¥, k > 0, and let p € M. In the definition of holonomy
groups (restricted holonomy groups) we used piecewise C'-paths. If we
denote by |Kj |, (1KY ,l,) the groups obtained in this way from piecewise
C*-paths, 1 < 8 < oo, then we get the following sequence of Lie subgroups
(cf. [1], proof of Proposition 1): )

(8) 'KQ,pIoo < IKQ,p|s+l < IKQ,pIa’ I-Kz,ploo < lKg,p|a+l < le.pln 8 > 1.

Similarly, for holonomy bundles associated with these groups we
have the principal bundle inclusions

(9) Q(M,p), < Q(M, Plgs1 < QM,p),, 8=1.

PROPOSITION 1. Let (M, G, Q) be a lift space of olass C*, k = 0. Then,
Jor every p e M,

(1) IKQ,p'a = lKQ,p|’
(ii) |EQpls = 1EQ,pl,

(iid) Q(M,p), =Q(M,p), 1L<8< oo,

Proof. By (8) and (9), we have only to show that the proposition is
true for 8 = oo, Put |Kg,l, = K and define the map &: M —G/K
by D(q) = ¢x(9°(e, 1)), where 9§, € [0, 1], is a piecewise C*-path in M
joining p to ¢ in M. It is easy to see that @ is well defined (cf. [2], proof
of (i) of Proposition 3). For any piecewise C*-path y, in M starting from
P we have &(y) = ‘PK(?(% t)) and, by (1),

d .
a D(y) = Q) P(7)-

Thus & is differentiable and satisfies condition (3), so that by (ii) of
Lemma 1 we obtain |[Ky | c K and, for its identity components, |Kg |
c |KQ,ple- Therefore, (i) and (ii) hold, which easily implies (iii). This
completes the proof.

Remark 1. In the case where M is an analytic manifold, we can still
define the groups |Kg ., |Kg ,lo and the bundle Q(M,p), by using
only piecewise analytic paths in M. The same argument shows that |[Kg ,|.,

= IKO.pl’ IKoo.plo = |-KQ,2| and Q(M, p), = Q(M, p).

)
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4. Factorizations of lift spaces. Let (M, @G, @;), ¢ = 1, 2, be lift spaces
of class C*, k > 0. Then (M, G, @,) is said to be a factorization of (M, G, Q,)
if there exists ¢ € M such that |Kg .| = |Kq, .| and the diagram

¢01.¢

M

>G/|Kol'q|

Woz’q\ pr
N
G/ IKoz,ql

commutes. By (i) of Lemma 1 and (i) of Lemma 3, if there exists such
a ¢ € M, then this property holds for every q € M.

Now we give an infinitesimal factorization property.

ProPOSITION 2. Let (M, @,Q,), i = 1,2, be lift spaces of class C*,
k > 0. Then the following properties are equivalent:

(i) (M, G, Q,) i3 a factorization of (M, G, Q,).

(ii) @:(M, p) = Q.(M, p) for some point p € M.

(ili) 7@ < D9,

(iv) @:1(v) —Qs(v) € kg, , for each ge M and v e T, M.

Proof. For any piecewise C'-path y, in M, we denote by 7(g, ¢) the
lift of y with origin g € G in the lift space (M, G, @), = 1, 2.

(i) = (ii) follows from Lemma 2.

(ii) = (iii). I¥ @,(M, p) =« @:(M, p), then by (6) and (7) we have
T ¢ D% < D°,

(iii) = (ii). Let &, t € [a, ], be a horizontal path in M X G and let
£, = (p, ¢). Then & eT% c D%, so by Lemma 6 we have & €Q(M,p)
for t e [a,b]. Thus we obtain |Kg ,| < |Kg, | and &|Kg ,| = Qs(M, p)
for each ¢ € [a, b], which yields Q,(M, p) < Q3(M, p).

(ii) = (i). Let @, (M, p) < Qs(M, p). Then |K | < |Kq,,,| and, by (2),
for any piecewise O'-path y, in M starting from p there exists a piecewise
C'-path s, in |Ky, ,| such that y(e, t) = 7%(e, t)s,. Thus, by (4),

Pr®g,,(v:) = Pr(FH(e, Dy () = 726, Doy, ,i(0) = Payp(7)-

Hence pr®, , = Pq,.p-

(iii) <> (iv) follows from (7). This completes the proof.

Examples. (i) Let (M, @, Q) be a lift space of class C%, k> 0. By
Lemma 4 and paracompactness of M, there exists a C* vector subbundle
B(M)c M xG such that M xG = B(M)Dko(M). Let Q@ = @®+Q*
be the corresponding decomposition of Q. Using Lemma 7 we see that,
for any p € M, v,, v5, v € T, M and a € R, the vectors @7 (v, +v,) — Q% (v;) —
— QB (v,) and Q% (av) —aQ® (v) are equal to zero. Thus thelift space (M, G, @F)
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is linear and of class C* and, by (iv) of Proposition 2, it is a factorization
of (M, @Q,Q).

(ii) Let G x M — M be a left transitive Lie group action and F,:
MxG —-TM the induced map such that F, (g, X) = Xq for ge M,
X € G. Let (M, G, Q) be a lift space of class 0%, k > 0, along F,, [2] (i.e.
Fylq,Q(v)) =v, ge M, veT,M). We have ko(M) < kerF,, (cf. [2],
(iv) of Proposition 6). Thus, by (iv) of Proposition 2, every factorization
of (M, @, Q) is a lift space along F,. In particular, given a O* vector
subbundle B(M) ¢ M X G such that M X G = B(M)D ky(M), the induced
factorization (M, @, @®) of (M, G, Q) (cf. Example (i) is a linear lift space
of class O along F,,.

(iii) Let (M, G, Q) be a lift space of class 0%, k> 0, and let p € M.
Then every C*-connection T on the bundle @ - @/|Kg ,| induces a linear
factorization of (M, &, Q). In fact, let @, : T(G/|Ky,,|) - G be the linear
map associated with the connection 7' (cf. [2], Remark 8) and let Q7
= @,0(Pg p)«. Define a OF vector subbundle B(M) = M x G by setting

B(M), = {@:(XPgp(0): X eG), gqeM.

We have M x G = B(M)®ko(M) and, by (3), QT = @®, where
Q = Q®+@* is the corresponding decomposition of Q. Thus, by Example (i),
the lift space (M, @, @7) is a linear factorization of (M, &, @) of class C*.

5. Curvature. Let (M, @, @) be a lift space of class C%, k¥ > 2. The map
K :I'(TM)x ™(TM) - I'* (M x G)
defined by
10)  K(X, ¥) = [@(X), @(Y)]+XQ(¥)— YQ(X)-Q([X, Y])

for X, Y e I'°(TM) is called the ocurvature of (M, @G, Q).

For any map 8: M -TM X G such that 8(¢) e T, M xXG, g€ M,
we denote by S8* the corresponding (right) @-invariant wvector field
on M xQ@.

LeMmA 8. If X, ¥ € I'°(TM), then K(X, Y) e I'*"(ko(M)).
P.oof. Since K(X, Y) e I'*"'(M x @) and ko(M) c M X G is a C**
vector subbundle (cf. Lemma 4), we have only to show that K(X, Y), € kg,

for each ¢ € M. By Lemmas 5 and 6, the distribution D@ is of class C* and
it is involutive. Thus, for any ¢ € M,

-D(Qq.e)a [-X+Q(X)*y Y“I’Q(Y)*](q,e) )
= [X, Y]+ X,Q(Y)— Y ,Q(X)+[Q(Xy), Q(X,)]
= [X, YL+'Q([X7 Y]q)‘l‘-K(X: Y)q’:'
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and from (5) and (7) we obtain K (X, Y), € kg, ¢, which completes the
proof. ‘

Remark 2. If (M, G, @) is linear, then its curvature is bilinear over
the ring of 0*-functions on M. In this case, given a chart on M with base
vectors J; and a basis E, of G and setting K(9;, 9;) = . and Q(9;)
= Qi FE,, we have

Ky = 0,95 — 0,97+ Q¢ Q7 Chw)

where CJ,, are the structure constants of G' given by [Z,, E,] = C},F,

ProPOSITION 3 (holonomy theorem). Let (M, @&, Q) be a lift space
of class C%, k> 2, and let p € M. Then the holonomy algebra kq,p 8 equal
to the vector subspace of G spanned by all elements of the form

(11) g (K (X, X),)g,
where X, Y € I'°(TM) and (g, g9) € Q (M, p). -

Proof. Let 2 denote the vector subspace of G spanned by all elements
of the form (11). In view of Lemma 8, K(X, Y), € kg4, 80 that, by (i)
of Lemma 3, we have g~'(K (X, Y))g € kg, for any X, Y € I‘“’(TM) and
(g,9)€Q (M, p). Thus h < kg ,. By definition, h is invariant by ad |K, ,| and,
consequently, the connected Lie subgroup H of G with Lie algebra & is
a normal subgroup of [Ky ,|. We must only show that K = |KJ |.

Let ¢y : M — M be the universal covering map and let (M, @4, Q)
be the induced lift space, where @ = Qo (0y)s. Lot P € 03/ (p). It is easy
to see that |[Kg;| = |KQ, ol (cf. [2], Example 6) and the Lle algebra con-
structed in this way for (M, G, @) is equal to &, so that we may assume that
M is simply connected and that |Kg ,| = |Kg,p|

Thus we obtain the principal bundle pr: G/H — @ /| Ky ,| with struc-
ture group G, = |Kg ,|/H. Let W denote the restriction of the induced
principal bundle

idy Xpr: M X (G/H) - M x (G| Kg ,!)
to the graph gr &g , of the map P, ,. In view of Lemma 2 we have

W = {(%‘PH(Q)) 1 (g, 9) GQ(M’I’)} .

and, by (i) of Lemma 1, it is a C*** principal bundle over gr &, ,. Define
the subset T of TW by

Tione) = {v+Q ) pa(g) :ve T, M} for (q,9) eQ(M,p).

We assert that T is a flat connection of class O¥ on the bundle
W - gr ¢Q.p’

In fact, let us first prove that T is a distribution on W. By (10) we have
(12) Q(x,[¥,2]]) = [@(X),Q(Y, 2]+ XQ([¥, Z])—

-[¥,2)Q(X)-K(X, [¥, Z]))
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for X, Y, Z € '™ (TM). Summing (12) cyclically in X, Y, Z and using (10)
and the Jacobi identity, we obtain

(13) cyelQ([X, [¥, Z]))
= —cycl(XK(Y,Z)+K(X, (Y, Z])+[Q(X), K(Y 2)]).
Define a vector field V € I'*(TW) by

V(qmg(a)) = Xq+Q(Xq)?’H(9) for (¢, 9) €Q(M, p).

Let ¥ denote the restriction of the map idy X ¢g: M XG - M x (G/H)
to @ (M, p). Clearly, the vector fields ¥ and (X +Q(X)*)|g(a,) are ¥P-related
and K(Y, Z)*|gr,y) i P-related with zero, which yields

(14) X, K(Y,Z)pg(9)+[Q(X,), K(Y, Z),]ou(9)
[X+Q(X) y B(Y,2)*Yq.09(9) = [(X4+Q(X)*, K(Y,2)*)qqale)
= t-(a.ﬂ)([x’l'Q(X) 7K(Yv Z) ](q.a)) = [V7 0](q.wH(e)) = 0.

By the definition of &, K (X, [Y, Z)),9a(g9) = 0 for (q, 9) € Q (M, p),
which together with (14) applied to (13) gives

(15) cyclQ([X, [Y, Z]|) ¢al9) =0, (4,9) €Q(M,p).

Let (g,9)€Q(M,p) and v,,v,€T,M. Then there exist X, Y, Z
in I'*(TM) such that v, = [X,[¥, Z]|,, ». = [¥, [Z, X]],, s0o by (15)
and the Jacobi identity we obtain

Qv +v3)9m(9) = Q(v1)pr(9)+Q(vs)px(g).

Thus Tg, ) is a vector subspace of T, ,,H(,))W for (q,9) €Q (M, p),
since @ is continuous. Clearly, dim T = dim M, and using local cross-sections
of the bundle G/H — @/|K, ,| we see that T is a C*-distribution on W.
Since T is G,-invariant and pr,T = TM, it is a C*-connection on the.
bundle W —grd, ,. By (10) and an easy computation, we verify that
the bracket of any two horizontal vector fields on W is horizontal, which
shows that T is flat.

By our assumption, M is simply connected and, consequently, 7'
induces a global O**! cross-section Z of the bundle W — gr&, , such that
E(p, Po.p(P)) = (P, Pule)) and, since prog(g) = Po,(a), (9, 9) €Q(H, p),
we have

(16) E4(0+Q(0)Pop(0) = 0+Q(0A(g, Pop(e)), g€ M, veT,M,

where A = prypZ and pry is the projection W < M x (G/H) —G/H.

Let @ = Ao(idy, Pg,,)- From (16) we obtain PD,(v) = Q(v)D(q)
for g € M and v € T, M. Thus &: M - G/H satisfies condition (3) and, in view
of (ii) of Lemma 1, we obtain |KJ, ,| = H. This completes the proof.
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Using Proposition 1 we easily obtain (cf. [2], (iii) of Lemma 1)

COROLLARY 1. The holonomy algebra kg, at p is equal to the vector
subspace of G spanned by all elements of the form

¥ (e, by)-l(K(Xr Y)q)‘)-’(ay by)7

where X, Y e I'°(TM), qe M and y,, t € [a,,d,], is a piccewise C™-path
in M joining p to q.

As an immediate consequence of Proposition 3 we obtain

COROLLARY 2. A lift space of olass C* is locally flat if and only if ils
curvature vamishes.
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