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UNBOUNDED MULTIPLIERS AND SUMMATION OF SERIES

BY

A. F. KLEINER (DES MOINES, IOWA)

Let 4 be a (sequence to sequence) matrix method of summation.
n
If the sequence of partial sums {Zuk] is in the convergence domain of the

matrix, then 4 sums the 1nf1n1te series Zuk

We consider the question:

If a regular matrix sums the series )’ u,, does there exist an unbounded
sequence {4} such that 4 sums )'1,u,?

Bryant showed that the answer is yes if 4 is the (C, 1) matrix ([1],
lemma 2.1). More generally, the answer is yes if )'u, has bounded partial
sums. An example is also given which shows that such a sequence does
not necessarily exist if the series does not have bounded partial sums.
Finally, an application of theorem 1 is given.

If A is a matrix, ¢, is the convergence domain of 4. For a sequence x
define Vz, = x,—x,_, (where z, =0) and Vz = {Vxz,}; then z is the
sequence of partial sums of the series whose terms form the sequence V.
Since )V is summed by A if and only if xec,, we define Ve, = {Vz: zec}.

If # is summed by A to a, this is indicated by limz = a.
4

The spaces of bounded, convergent and null sequences are denoted
by m, ¢ and ¢,, respectively, and for zem,

lz|| = sup{l@,l: » =1,2,...}.
For a matrix A, ||4]| =sup{2|ank|: n=1,2,..}%

An index sequence = {q;}is a strlctly increasing sequence of 1ntegers
such that ¢, = 0. If Q is an index sequence we define

Q) = {g;_,+1,...,¢9; fOI‘j =1,2,

and denote the sum ' z; by Z’mk (k€@ (j)). A sequence  is said to satisfy
keQ(j)

condition |Q| if Y |Va,| = 0(1) (keQ(4)).
P '
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We prove first the following theorem:

THEOREM 1. Let A be a regular matriz. If D'V, is a divergent series
with bounded partial sums which is summed by A, then there exists an un-
bounded sequence {1} such that the series DAV, is summed by A.

Proof. Let « be the sequence of partial sums of > Vx,. Notice first

that it is sufficient to suppose that 4 sums « to zero, for if limx = a # 0,
A

the sequence {z;,—a} is summable A to zero and Vz, = V(x,—a) for
k> 1. Now define G = (g,z) Y gox = @n1%x- Since x is bounded,

Z nk
k=r

Moreover, a,,—0 as n—>oo and |g,.] = |Gl 17| < |l®]l* @] and s0
limg,, = 0. Finally,
n

lim = lim a2, =limx = 0.
- ;gnk " ; nkLk y

Thus & is a conull, v — ¢ matrix and there exists an index sequence @
such that if y satisfies |Q|, then yecgy ([3], p. 532, and [4], theorem 3.2).
Also since x is a bounded divergent sequence there exists a sequence y
such that

o o]
sup — Sup | ¥ @@y < SUP Y @il @] < 4] l]]
p
n,r T kg n

0< Vy,< Vaal, yntoo, y satisties Q.

Hence {x,y,}ec,.
Let {4;} be any sequence such that 1,Vz, = V(2,y,). Since  is a bound-
ed divergent sequence, Vx, # 0 for infinitely many k, and for these k

he = V(my) [V = Y (Varg) (V) + @y (VYi) [(Vay)
and thus
1Al = 195l — @] = 192l —lll]-

Since ¥, 100, the sequence {4,} is unbounded. This completes the
proof of the theorem.

Let # be an unbounded sequence and A be a regular matrix such
that ¢4, = {az +e: ais complex, eec} ([2], theorem 2). Suppose y is a diver-
gent sequence and {4,} is a sequence such that both Vy and {4, Vy,} belong
to Ve,. Then there exist complex numbers a, 8 (¢ # 0) and sequences
é, fec such that

Vyr, = eV +Ver,  4Vy, = BV +Vfr.
Thus, for ¥ such that Py, # 0,

e = BV +Vfi)[(aVa, +Vey)
= (Ba) + [aVf,— BVey)|al- (aVx, +Ve,) ™ .
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If « is chosen so that Fx is bounded away from zero, then Vy is
bounded away from zero and, since Ve, Vfec,, we have limi, = f8/a.
k

In particular, there exists a regular (normal) matrix 4 such that if A
sums the divergent series Y V'y, and A sums the series ) 1, Vy,, then {1,} ec.
’ K

We now give an application of theorem 1.

THEOREM 2. Let A be a regular matriz which sums a bounded diver-
gent sequence x, such that Vx ¢c,. Then A sums a series with unbounded terms.

Proof. Since x is a bounded divergent sequence summed by A4,
there exists, by theorem 1, an unbounded sequence {4,} such that the
series D', Vx, is summed by A. We note, from the proof of theorem 1,

%

that there is a y such that y, { co and |4;| > |y,| — ||lz|| if Vx, # 0 and that 4,

is arbitrary if Va, = 0. If, for k¥ such that Vz, = 0 we define 4, = vy,,

then |4;| > |yl —|l#|| for each k and lim|4,| = oco. Since Vx¢c,, {4,Vx;}
k

has an unbounded subsequence and the proof is complete.
An extension of theorem 2 and several related examples will appear
elsewhere ().
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(*) Some of these results were contained in the author’s dissertation, written
at Texas A. & M. University under the direction of Jack Bryant.



