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T. P. SPEED (SHEFFIELD)

Introduction. Over the last ten years Post algebras [8], [9], [19],
have been studied from a number of points of view [6], [12], [4], [10],
and in increasing generality [3], [16], [6], [10], [1]. In this note we
present yet another point of view which, although introduced in [6]
has not been exploited, and give another generalisation where the
“constants” are allowed to form an arbitrary distributive lattice with
zero and unit L.

We define a Post algebra P = (B, L) over a Boolean lattice B with
lattice of constants L, and prove that P is lattice isomorphic to the lattice
€(X, L) of all continuous L-valued functions defined on X = Spec B
where L is equipped with the discrete topology. This representation gives
a useful method of studying these more general Post algebras, and our
results throw considerable light on the nature and limitations of many
classical results.

As a further application we remark that the approach of this note
appears to be useful in the study of Lukasiewicz algebras, see [18] and
the references given there. '

Notations. We shall always be working within the category Dist,, of
distributive lattices with zero and unit; all sublattices have the same zero
and unit as the over lattice; all morphisms preserve zero and unit. The
complement of an element aeL will be denoted a°. A partition of 1 in B
is a subset {a,} < B with a, A a, =0 (a #a’) and Va, =1. If B is

a Boolean lattice, the Stone space X = Spec B of B is the set of all maximal
ideals # of B equipped with the topology generated by the basis sets
X, = {xeX: a¢x} (aeB); the basic results on this topic can be found in
[11]. Lattice congruences will always be denoted by upper case Greek
letters with the corresponding lower case letters being used for the cano-
nical epimorphism associated with the congruence.

1. Basic definitions. In this section we give our definition of a (gene-
ralised) Post algebra, and of its associated morphisms.
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Definition 1.1. Let P be a distributive lattice and let B, L be a Boo-
lean sublattice and a sublattice, respectively, of P. P is said to be the
(generalised) Post algebra over B with lattice L of constants if:

(i) for any seP there exists a finite partition {a,} =< B of 1 and
a set {l,} < L such that s = Va, A l;

(ii) the representation for se¢P given in (i) is unique in the sense
that if, for a finite partition {b,} < B of 1 and a set {m,} = L we also have
8 =V b, A m,, then {b,} i8 a refinement of {a,} and m, = I, whenever
b, < a,.

We will call the representation for seP given by (i) the minimal
representation and write P = (B, L). It is straightforward to verify that
when L is a finite chain and B is the centre of P, 1.1 reduces to the usual
definition of a Post algebra; in fact our minimal representation is a slight
variant of the monotonic representation. It is also clear that as a genera-
lisation of the usual Post algebra, 1.1 differs from the ones previously
given, e.g. [5], [16].

Definition 1.2. Let P = (B, L) and P’ = {(B’, L') be Post algebras.
A lattice morphism ¢: P — P’ is called a Post morphism if pB < B and
oL < L.

2. Equivalent forms. The result of this section contains a generali-
sation of [10] and a clarification and extension of 3.2 of [1].

THEOREM 2.1. Let P be a distributive lattice with Boolean sublattice B
and sublattice L. Then the following are equivalent:
(iy P = (B, L), the Post algebra over B with constants L.
(iiy P = B*L, the coproduct of B and L in Dist,,.
(iii) P ts canonically isomorphic to € (X, L), the lattice of all L-valued
functions on X = SpecB, where L is equipped with the discrete topology.

Proof. (i) = (ii). We use the characterisation of a coproduct in Dist,,
given in [1]. Suppose a;, a,eB, I, l,eL satisty a, A I, < a, v I,. Writing
this relation in the minimal representation of 1.1 (i) we have

(@ Aly) v (a3 A 0)
=(ayAa Al v(agAag Al AL)v(aTAa, AOAT) vV (afAa;AOAL)

whence, by the uniqueness 1.1 (ii), we deduce that a, = a, A a,orl; =1l;Al,
as required.

(ii) = (iii). We will show that (X, L) is the solution of the appro-
priate universal mapping problem. Firstly, if aeB, a —>a = xy, is a lattice
monomorphism of B into ¢(X, L). Also if [: X — L is the constant map-
ping to l¢L then I-—1 is a lattice monomorphism of L into ¥ (X, L).
Further, if fe ¥(X, L) then the range of f is a finite subset say {l,} = L.
If f~'1, = A, < X then A, is open-closed and so 4, = X, for a unique
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a,<B. In this case f = \/@,Al,. Now if f: B—~D and A: L—> D are
U

lattice morphisms from B and L respectively into a distributive lattice D"
we can define y: ¢(X,L)—D by putting yf =\ fa,AAl, where
u
f = Va,Al,. It is easy to see that y is the unique morphism for which
ya = fa (aeB), and yl = Al (leL).
(iii) =~ (i). As remarked in the previous proof, any fe (X, L) can be
written f = \/@,Al, where it is easy to see that the {7,} = B so con-

w .
structed is a partition of 1. Thus 1.1 (i) is satisfied and the construction

we used clearly satisfies 1.1 (ii). The canonical isomorphism is \/ a,Al,
u

(minimal representation) — \/@,Al, where the latter is a function on X

k13
to L. This completes the proof of the theorem.
For the remainder of this note we shall take the canonical isomorphism
of 2.1 to be an identification. Notationally, all this amounts to is the
absence of a bar over elements of B and L.

3. Associated objects. We now turn to the definition and elementary
properties of the objects associated with Post algebras, viz. Post subal-
gebras, Post ideals and Post congruences.

Let P = (B, L) and suppose that B, is a Boolean sublattice of B
and L, a sublattice of L. We define the Post subalgebra generated by B,, L,
to be the sublattice P, of P generated by B, U L,. Further, any sublattice
obtained in this manner is called a Post subalgebra of P.

ProrosITION 3.1. (1) P, ts the Post algebra {B,, L,).

(ii) P, = B,*L,.

(iii) In the identification of 2.1, P, coincides with the sublattice of
€ (X, L) consisting of those functions which take values in L; and which
can be factored through X, = Spec B;.

Proof. We only prove (iii). First observe that the canonical mono-
morphism 4;: B, — B induces a continuous surjection i;: X — X, and
so fe €(X, L) factors through X, iff f = f,04] where f,¢ ¢(X,, L). This
gives a canonical isomorphism between the functions in (iii) and ¢ (X,, L,)
and the proof is complete.

Now suppose that j is an ideal of B and J an ideal of L where
P = (B, L) is a Post algebra. We define the Post ideal I; , generated
by (j,J) to be the lattice ideal of P generated by j U J. Further, any
ideal obtained in this manner is called a Post ideal of P.

PROPOSITION 3.2. Let Q be a Post ideal of P = (B, L)>. Then:

(i) @ =1;; where j =Q NnB, J =@ N L.

(ii) In the identification of 2.1, @ coincides with the functions 5; ;
= {fe ¢ (X, L): f(x)ed for all z 2 j}.
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Proof. (i) is immediate. To see (ii) we first note that for aeB, a
= xx, €50 U @(x) = 0 for all # 2 j, i.e. iff aex for all # 2 j which is
clearly equivalent to aej. Also for leL, le #; , iff leJ. Thus I, < 4; ;,
since the latter is clearly an ideal. The converse inclusion follows immedi-
ately from 1.1 (i). |

A Post congruence © on a Post algebra P = (B, L) is a lattice con-
gruence with the extra property: if a,beB and I, meL, and a Al
=bv m(O) thena Ab=a(@)orl Anm=1(0).

ProPOSITION 3.3. Let @ be a lattice congruence on the Post algebra
P =(B,L) and let ® = O|B and ¥ = O|L. The following are equivalent:

(i) @ is a Post congruence.

(ii) © is a Post isomorphism of P|O onto (B|®, L|¥).

(iii) For s,teP we have s = t(0) iff in €(X, L), s(x) = t(z)(¥) for
all x 2 ker®.

Proof. (i) and (ii) are clearly equivalent. Suppose @ satisfies (iii);
take a,beB and I, meL and suppose a Al =b v m(0)in P. Then if we
assume a A b = a(®P), there exists z =2 ker® such that bex and a¢z. By
(iii) we have (@ A I) (x) = (b v m)(x)(¥)in L, i.e. @(x) Al = b(x) v m(¥).
Since a¢x,a(x) =1, and also bex implies b(x) = 0 whence | = m(¥)
and @ is a Post congruence.

To prove (i) implies (iii) we suppose O is a Post congruence; by (ii) P/O
can be identified with ¥(X,, L/¥Y) where X, = SpecB/®. Now X, is
canonically homeomorphic with the closed subset h(ker®) = {reX: =z
2 ker @} of X = Spec B. Consider the canonical epimorphism 6*: ¥(X, L)
~> € (X4, L|¥) ~ €(h(ker®), L|¥P); the inverse image of fe € (h(ker ®),
L/¥?) under 6* defines a congruence class exactly as deseribed in (iii). The
proof is complete.

Since congruences on B can be uniquely associated with ideals of B,
a determination of all congruences on P = (B, L) is equivalent to a deter-
mination of ideals of B and congruences on L; we then apply 3.3 (iii).
If J is an ideal of L and j an ideal of B we write ©’’ for the congruence
on P obtained by 3.3 (iii), using the @ on B determined by j and the ¥
on L determined by J.

4. Equivalence of two categories. It is clear from the preceding sec-
tions that the Boolean lattice B and the distributive lattice L indepen-
dently determine the properties of P = (B, L). In this section we make
this idea precise; to begin with we must reconstruct B and L from P.

PROPOSITION 4.1. Let P = (B, L) and fix x<X and let p be a maximal
ideal of L. Then the maps: i: L—%|F,, given by A = 6~°(]) and
B: B— €|F, ,, given by Ba = 6%P(a), are lattice isomorphisms.

Proof. We do not give full details. Consider first €/, ,; we observe
that if f = g(0>°) then f(z) = g(«). Also if f(x) = leL, say, we observe
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that f = [(0*°), for if A = f~'(l), we have fv y . =1Iv y . where y .(x)
= 0. Thus congruence classes of ¥ modulo #, , correspond in a one-one
manner to elements of L. The remaining details that 4 is an isomorphism
are straightforward. Next consider €/#, ,. If f = ¢(0"?) then it is not
hard to show that, when f = \/@,Al, and ¢ = \/ b,Am, in the minimal

u v .
representation, we have \/ %{a,:1,¢p} = \V 2{b,: m,¢p}. Conversely if for
h = \/(‘;w'/\ﬁ we have \/Z{c,: n,¢p} = aeB, then we can show that

h = a(@ %P) Thus # can be seen to be bijective and again the remaining
details are omitted. This completes our outlined proof.

Our next result is in a sense an extension of Theorem 2.2 of [1], and
is proved in the same way. Post is the category of (generalised) Post alge-
bras introduced above, and Bool is the usual category of Boolean lattices.

THEOREM 4.2. The categories Post and Bool X Dist,, are equivale;ft.

Proof. For the object P = (B, L) of Post we put '(P) = (B, L);
if ¢: P— P’ is a Post morphism we put F(gp) = (¢p|B, ¢|L). It is easy
to check that F is a functor from Post to Bool x Dist,,. Also for an object
(B, L) of Bool x Dist,, we put G(B, L) = B+*L;if (¢,, 9,): (B, L)~ (B',L’)
is a morphism in Bool x Dist,, we define G'(¢) to be the unique morphism
which follows from the definition of coproduct. Again G is easily checked
to be a functor. The proof that /' and G are mutually inverse category
equivalences is exactly as in Theorem 2.2 of [1], making use of our 4.1.
This completes our proof.

5. Further results. In this section we prove some miscellaneous results
which relate to known results on (ordinary) Post algebras.

THEOREM b5.1. The centre Z, of (X, L) coincides with the image
of Biff Z;, = 2.

Proof. If Z;, = 2 then any function f: X — L which has a comple-
ment f° must take values in Z; i.e. f(x) = 0 or 1 in L for all xeX. Thus f
is the indicator of its support and so in the image of B. Also if ae<B then
Xx, 18 central in ¢ (X, L).

Conversely if Z, coincides with the image of B in (X, L) then
Z; = 2 since meL with »° must be n = 0 or » = 1. This completes the
proof. :

CorOLLARY 5.2 ([1]). If L is a chain, then the centre of B*L is the
image of B.

Since we are dealing with a lattice of functions with values in L and
pointwise operations, many properties of L carry over to ¢ (X, L). Because
this is of some interest we state some examples:

THEOREM 5.3. Let P = ¢ (X, L) be a Post algebra. If L is either a

(i) Pseudo-complemented lattice (or dually), or
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(ii) Stone lattice (or dually), or

(iii) Relatively pseudo-complemented lattice (or dually), or

(iv) Post algebra,
then so is P.

COROLLARY 5.4. If L is dense (or dually), then P is a Stone lattice with
centre isomorphic to B (cf. [7]).

Next we fix the distributive lattice L and call Post algebras P
= (B, L), Post L-algebras. Thus classical Post algebras are Post n-alge-
bras where n is the nm-element chain.

THEOREM 5.5. The category Post;, of all Post L-algebras is closed under
the operations of forming subalgebras, quotient algebras and products of
algebras.

Prootf. We already have a notion of Post subalgebra and Post con-
gruence (giving rise to quotient Post algebras) which specialise appro-
priately when L is fixed. It remains to check that Pest, is closed under
products. Let P, = (B;, L) (ieI) be a family of Post L-algebras. Then
we have P, ® ¢(X,, L) (ieI) and so

P=]J]P,=]]¥¢X;,L) =% X, L)
iel il iel
where () denotes disjoint union (topological coproduct); thus P is a Post
L-algebra. It is clear that we can consider the action of L within a Post
L-algebra as that of a family of operations.

COROLLARY 5.6 [15]. Post n-algebras form a variety.

Our representation of a Post algebra as a lattice of functions permits
a very easy description of prime, minimal prime and maximal ideals.

THEOREM 5.7. Let P = ¢(X, L) be a Post algebra. Then the ideal J; ;
= {fe€(X, L): f(y)ed for all y = j} is prime iff ] = veX and J is prime
in L. Further the ideal £, , is minimal prime [maximal] iff p is minimal
prime [maximal]. .

Proof. We omit the easy details. Let us write Minp 4, Max A
respectively for the spaces of minimal prime and maximal ideals of an
object A of Disty,. Then we have the easy

COROLLARY 5.8. Minp ¥(X, L) ~ X X MinpL; Max ¢(X, L) ~ X X
X Max L; Spec (X, L) ~ X X Spec L.

From this corollary we can see how Dwinger [4] was led to define
Post spaces, and that they are no more than products of Boolean spaces
with spaces of the form Y ={1,2,...,n} with topologies {@, {1},
{1,2},...}.

6. Completeness. We close with a few remarks on completeness and
completions of Post algebras. Although the results given undoubtedly
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hold for more general lattices L, in this preliminary note we only give
them for finite L.

THEOREM 6.1. Let L be finite. Then €(X, L) is m-complete (m any
infinite cardinal) iff B is m-complete. ‘
Proof. Take {f;: tel} = ¢(X, L) with |I| < m. Then we show that

V f; can be defined pointwise and be continuous. This is true because

tel .

for any leL,{xeX: V fi(x) =1} = {weX: V fi(x) =1} where the
iel FcI tel

union is over the finite subsets # of I; there are << m such finite subsets

and so if X is the representation space of an m-complete Boolean lattice

the set union has open-closure, as each element is open-closed. Do this

for all leL and we see that \/ f; is a continuous function on X. The con-
iel

verse is immediate since B itself is imbedded in ¥(X, L) and so known

results [16] on Boolean lattices imply the desired result. The proof is

complete. ’

The final result is now clear and can be stated without proof.
THEOREM 6.2. Let L be finite and let X = Spec B where B is the normal

completion of B. Then € (X, L) is the normal completion of €(X, L).
COROLLARY 6.3 [4]. Put L = n in 6.2,

I would like to thank Dr. R. Balbes for sending the preprints [1], [2]
thus stimulating me to write this note.
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