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0. Introduction. Paracompact (topological) manifolds modeled on a space
E are called E-manifolds. We assume that all E-manifolds have the same
weight as the model space E. As the model space we take a metrizable
locally convex linear topological space E which is homeomorphic to (=) the
countable-infinite product E® or its subspace

? = \(x)€E | x; =0 except for finitely many i}.

Let M be an E-manifold. A subset X of M is said to be E-deficient in M if
there is a homeomorphism h: M — M x E such that h(X) c M x {0}. (Note
that M = M x E by the Stability Theorem [25].) For a closed set X in M, X
is E-deficient if any only if X is a Z-set, that is, for each open cover # of M
there is a map f: M — M\ X which is #-near to id (see [28], Remark B2). A
submanifold of M is a subset of M which is an E-manifold. The following is
well known as the Collaring Theorem (e.g., see [21], 4.4):

(AO) Each closed submanifold of an E-manifold is E-deficient (i.e., a Z-set)
if and only if it is collared (in the sense of Brown [1]).

Such a submanifold is called a Z-submanifold. In view of the above fact,
Z-submanifolds are considered as the abstract boundaries of E-manifolds.
We will call a nowhere dense submanifold W of M a boundary submanifold if
there exists an embedding h: M — E with h(W) = bd h(M), the topological
boundary of h(M) in E. In general, a Z-submanifold is not a boundary
submanifold ([20], Example) and a boundary submanifold is not a Z-
submanifold ([21], Example 2). It has been shown in [20] that a Z-
submanifold W of M is a boundary submanifold if W contains some
deformation retract of M.

M. Brown and B. Cassler [2] proved that each compact connected n-
manifold M can be obtained from the n-cube I" by making identifications on
the boundary 0I" that is, there is a map h: I" > M such that h(dI" is
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nowhere dense in M and h|I” is a homeomorphism of the interior I* onto
M\ h(0I". Prasad [19] established a similar result for Q-manifolds (Q = I°,
the Hilbert cube), that is, for each compact connected Q-manifold M there is
a map h: @ xI =M such that h(Q x{1}) is nowhere dense in M and h|Q
x [0, 1) is a homeomorphism of Q x[0, 1) onto M\ h(Q x {1}). In this paper,
we prove the E-manifold version, that is,

THEOREM 1. For any connected E-manifold M, there is a perfect map h: E
xI = M such that h(E x {1}) is a boundary submanifold of M and h|E x[0, 1)
is a homeomorphism of E x[0, 1) onto M\ h(E x {1}).

Here one should remark that h(E x {1}) is a boundary submanifold of
M. This is clearly impossible for finite-dimensional manifolds. Although
Prasad’s proof cannot conclude this, it is possible for Q-manifolds because
our proof can be applied.

Theorem I is generalized as follows if the perfectness of h is not
required:

THEOREM II. Let f: M =N be a map between E-manifolds such that
f (M) meets all components of N and let M, be a Z-submanifold of M which is
a deformation retract of M. Then f is homotopic to a map h: M — N such that
h(M,) is a boundary submanifold of N and h|M\ M, is a homeomorphism of
M\ M, onto N\h(M,).

To prove Theorem I, we show that each connected E-manifold is a
perfect image of the model space E (Corollary 3.2). Then the following
theorems are also generalizations of Theorem I, but unfortunately the proofs
do not work for the following case:

() E is not complete-metrizable and E % Ef.

THeoreM III. Excluding the case (%), let f: M — N be a surjective map
between E-manifolds, and W a Z-submanifold of M such that M is deformable
into W. Then f is homotopic to a map h: M — N such that h(W) is a boundary
submanifold of N and h| M\ W is a homeomorphism of M\ W onto N\h(W)
and, for each xeM,

h™'h(x)=x or h™'h(x)=f"!(y) for some yeN.

Moreover, if f is closed, then so is h. Thus, if f is perfect, light, monotone or
UV" (1 £n< o), then so is h.

THeoreM IV. Excluding the case (), each surjective map f: M — N can
be approximated by maps h: M — N such that, for some Z-submanifold M,
which is a deformation retract of M, h(M,) is a boundary submanifold of N
which is a deformation retract of N, hl M\ M, is a homeomorphism of M\ M,
onto N\h(M,) and h|My =y f¢p~' for some homeomorphisms ¢: M — M,
and y: N = h(M,). Moreover, if f is closed, then so is h.

All of our theorems are valid for compact Q-manifolds and also mani-
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folds modeled on non-metrizable spaces,

R*® =dirlimR" and Q%®=dirlimQ"
(see Section 7).

1. Preliminaries. Let 4 be an open cover of a space Y Amapf: X »Y
is %-near to a map g: X —Y if for each x € X there is some U € % such that
f(x), g(x)eU. A homotopy h: X xI =Y is called a %-homotopy if for each
x€X there is some U e such that h({x} xI) cU. If h is a %-homotopy
from fto g (i.e., ho = fand h, = g), we say that fis %-homotopic to g. A map
f: X =Y is a ¥-homotopy equivalence if there is a map g: Y — X such that
fg is “#-homotopic to id and gf is f ' (%)-homotopic to id. A fine homotopy
equivalence is a “/-homotopy equivalence for any open cover % of Y. A map
f: X =Y is a near homeomorphism if for each open cover % of Y there is a
homeomorphism g: X =Y which is %-near to f. A closed map f: X =Y is
perfect if each f~!(y) is compact.

Recall that E is a metrizable locally convex linear topological space such
that E = E® or = E}. By & we denote the class of all spaces which can be
embedded in E as closed sets. Then & is a subclass of the class .# of all
metrizable spaces. By Dugundji’s Extension Theorem ([12], Ch. II, Theorem
14.1), E is an AE(.#); hence, by Hanner’s Theorem ([12], Ch. II, Theorem
17.1), each E-manifold is an ANE (.#), so an ANE (&). Recall we assume that
E-manifolds have the same weight as E. By Henderson’s result ([11],
Theorem 2; cf. the proof of Theorem 1 in [10]), we have

(A1) Each E-manifold can be embedded in E as a closed set.

Hence

(A1) Each E-manifold is an ANR(&).

For a complete-metrizable space X in the case (x) Torunczyk [27]
proved the following

(A2) For each AR(¢#) X, X xE = E.

(A2) For each ANR(#) X, X xE is an E-manifold.

Anderson-McCharen’s Homeomorphism Extension Theorem was gen-
eralized in [5] (cf. [21]) combined with [28], Remark B2.

(A3) Let M be an E-manifold and # an open cover of M. Each
homeomorphism f: X — X' between Z-sets in M which is %-homotopic to the
inclusion X c¢ M can be extended to a homeomorphism f: M — M which is
ambient-invertibly st (“/)-homotopic to id. |

Ferry [6] established the a-Approximation Theorem for [,-manifolds.
The proof is valid for E-manifolds because all results used in the proof have
been generalized to E-manifolds. Thus we have

(A4) Each <-homotopy equivalence between E-manifolds is st(4)-
homotopic to a homeomorphism.
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This generalizes the Stability Theorem [25]:

(A4’) For each E-manifold M, the projection p. M xE =M is a near
homeomor phism.

For the following Triangulation Theorem, refer to [27], Theorem 34.

(AS) Each E-manifold is homeomorphic to a product |K| x E, where K is a
locally finite-dimensional (lf.d.) simplicial complex and |K| admits the metric
topology.

2. The mapping cylinder of a map between ANR’s. The open cone over

a space X is a set -
C°(X) = X x(0, o0) LU ,0!

with the topology generated by open subsets of the product space X x(0, o)
and sets X x(0, &)u 0}, ¢ >0. The mapping cylinder of a map f: X =Y
is a set

Z(f)=Xx(0,1]JuY

with the topology generated by open subsets of the product space X x(0, 1]
and sets f~!(V)x(0,e)uV, where V is open in Y and 0 <e <1. By
q: X xI - Z(f) we denote the natural map defined by

(x,t) ift#0,
(x) ift=0.

The collapsing c: Z(f) =Y defined by
c(x,t)=f(x) for (x,t)eX x(0, 1],
c(ky) =y for yeY

q(x, t) =

is continuous in this topology. When Y = {0}, Z(f) is the cone over X,
denoted by C(X). Clearly,

C(X\X x (1) = C°(X).

In the above, if X and Y are (complete-) metrizable, then the mapping cylinder
Z (f) is also (complete-) metrizable. By Kruse-Liebnitz’s Theorem [14], if X
and Y are ANR(.#)’s, then the mapping cylinder Z(f) is also an ANR (.#).

Moreover, we have the following
2.1. THEOREM. Let f: X - Y be a map between ANR(&)s. Then the

mapping cylinder Z (f) is also an ANR(&). And if Y is an AR(&), then so is
Z(f). Especially, the cone C(X) over an ANR(8) X is an AR(&).

This theorem is implied by the following
22. LEMMA. Let f: X =Y be a map. If X and Y can be embedded in E

as closed sets (ie., X, Ye&), then Z(f) can be also embedded in E as a
closed set.
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Proof. Assume that X and Y are closed sets in E. By Lemma 2 in [11]
and its proof, E = C°(E), whence

E=ExE = C°(E)xC°(E).

Thus we may show that Z (f) can be embedded in C°(E) x C°(E) as a closed
set. Let h: Z(f) = C°(E) xC°(E) be defined by

h(x, 1) =((x, 1), 0) for (x, )eX x {1},
h(x, 1) = ((x, 1), (f(x), 1=1))  for (x, N eX x(0, 1),
h(y») =(0, (v, 1) for.yeY.

Then it is straightforward to see that h is a closed embedding.
3. The proof of Theorem 1. We first prove the following

3.1. LemMA. Let K be a connected lfd. simplicial complex. Then there
are a contractible subcomplex L of the second barycentric subdivision sd? K
and a perfect map g: |L| —|K| from |L| onto |K|.

Proof. Let T be the maximal tree of the 1-skeleton K' of K and let

L= | st(v,sd?K)usd?T.
vek©

Then L is a contractible subcomplex of sd2K. It is easy to construct a
surjective (piecewise) linear map g: |L| —|K| such that, for each veK?,

g |Ist (v, sd2 K)j: |st(v, sd? K)| —=|st (v, sd K)|
is a homeomorphism and, for each 6 eK!\K?,

g(ist(d, sd*> 7)) = g,

where ¢ is the barycenter of ¢. Observe that for each x €|K| there are only
finitely many vertices v € K° such that x €|st (v, sd K)| because K is 1fd. Then
it follows that g is perfect.

3.2. CoroLLARY. Each connected E-manifold M is a perfect image of the
model space E.

Proof. From (A5) we obtain M = |K|xE for some lfd. simplicial
complex K. By the above lemma, we have a contractible subcomplex L of
sd?K and a perfect map g: |L| =|K| of |L| onto |K|. Since |L| xE = E by
(A2), we have the result.

Proof of Theorem I. As seen in the above proof, there is a perfect
map g: |L| —=|K|, where K and L are lfd. simplicial complexes such that

IK|xE=xM and |L|xE=E.

Then the mapping cylinder Z(g) is a complete-metrizable ANR (&) by 2.1,
and hence Z(g) x E is an E-manifold by (A2). Since the collapsing c: Z(g)
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—|K]| is a fine homotopy equivalence,
Z(@ xE=|K|xE=M

by (A4). As easily shown, Z(g)u C(|K|) is a complete-metrizable AR (&),
whence

(Z@uUC(K)xE =E
by (A2). Observe that
bdz,).cqxm < Z(9) xE = |K| xE.

Thus |K| x E is a boundary submanifold of Z(g) x E. Since g is perfect, so is
the natural map q: |L| xI = Z(g). The restriction q||L| x(0, 1] is a homeo-
morphism onto the image

q(ILI x(0, 1]) = Z(g)\IK| = Z(9)\q (LI x {0}).
By using (A3), we can show that
(ILI xI xE, |L| x {0} xE) =(E xI, E x {1}).

Then g xid: |L| xI x E = Z(g) x E induces the required perfect map h: E x I
- M.

4. The proof of Theorem II. Here we need the following

4.1. LemMmA. Under the hypotheses of Theorem 11, there are lfd. simplicial
complexes K and L, a subcomplex K, of K, a surjective map g: |K| —|L| and
homeomorphisms

¢: (K| xE, |Ko| xE) >(M, M) and : |L|xE =N

such that Yy~ 'f@ is homotopic to g xid.
Proof. By Theorem 3.4 in [27] and Theorem 1.3 in [22], we have
homeomorphisms

¢1: (K| xE, |[Ko| xE) »(M, Mg) and y: |L|xE >N,

where K, and L are lfd. simplicial complexes and K, is a subcomplex of
K, . Then, obviously, ¥ ~!f¢, is homotopic to a map g, xid, where g,: |K|
—|L|. By 3.1, there is a surjective (perfect) map g,: |K,| —|L|, where K, is a
contractible subcomplex of sd?L. Then |K,| xE = E by (A2). Take points
x; €|K,|\|K,| and x, €]K,| so that g, (x;) = g,(x,). By starring at x, and x,,
we can assume that x, €Ky and x,eK9. Identify x, = x, and let K
= K, UK, be the one-point union (K, nK, = {x,} = {x,}). Then K is an
1fd. simplicial complex and |K| is complete-metrizable ANR(4). Let r: |K|
—|K,| be the retraction defined by r(|K,|) = {x,} (= {x,}). Since r is a fine
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homotopy equivalence, it is easy to construct a homeomorphism
¢: (K| xE, |[Ko| xE) »(M, M)

so that ¢: |[K| xE = M is homotopic to ¢, o(r xid) by using (A4) and
(A3). We define a surjective map g: |[K| —=|L| by g|IKil =g;, i=1,2. Then g
is homotopic to g,r. Hence g xid is homotopic to ¥~ 'f¢.

Proof of Theorem II. By the above lemma, we can assume that M
= |K| xE, My =|Ky| xE and N = |L| x E, where K and L are 1f.d. simplicial
complexes and K, is a subcomplex of K, and that f =g xid, where g: |K]|
—|L| is surjective. By using (A4) and (A3), we can easily construct a
homeomorphism

j: (K] xI xE, |K| x 10! x E) =»(IK| xE, |Ko| x E)

such that j: |K| xI xE —=|K| x E is homotopic to the projection. Then j~! is

homotopic to the embedding
i: |[K|xE —=|K|xIxE

defined by i(x, y) =(x, 0, y). Using (A2’) and (A4), we have a homeomorphism
k: Z(g) x E —|L| x E which is homotopic to ¢ xid, where ¢: Z(g) —|L| is the
collapsing. Define h: |K| xE —|L| x E as the composition

j— 1 q xid k

J
IK|xE = |K|xI xE — Z(g) xE —|L| xE,

where q: |K| xI = Z(g) is the natural map. Then h is homotopic to cqi xid
= g xid = f. Similarly as in Theorem I, we can verify that h has the required

property.
5. Boundary submanifolds. In this section, the case () is excluded. The

following has been proved essentially in [20] by using (Al’), (A2), (A2') and
(Ad):

§.1. ProprosiTION. Let M be an E-manifold and W a closed nowhere dense
submanifold of M such that

(M, W)=(M xE, WxE).
If W contains a deformation retract of M, then W is a boundary submanifold
of M.
Here is proved the next lemma:
5.2. LEMMA. Let W be a Z-submanifold of an E-manifold M. If M is

deformable into W, then the projection p: M xI - M is homotopic to a
homeomorphism g: M xI =M such that g(M x {0}) = W.

Proof. Since any map between E-manifolds can be approximated by
closed embeddings (see [10], p. 49, (a)) (this follows from (A1’) and (A4’)) and
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M is deformable into W, we can easily obtain a closed embedding j: M
— W < M which is homotopic to id. Then j(M) is a Z-set in M because so is
W. Let i: M - M x I be the embedding defined by i(x) = (x, 0). By (A2) and
(A4), the projection p: M xI = M is a near homeomorphism, and hence
homotopic to a homeomorphism k: M xI — M. Then ki(M) is a Z-set in M
because it is collared. Note that j and ki are homotopic. By (A3), we have a
homeomorphism h: M — M such that j = hki and h is ambient-invertibly
isotopic to id. Then hk: M xI = M is homotopic to p and

hk (M x {0)) = hki(M) = j(M) c W.

By the _above lemma, if an E-manifold M is deformable into a Z-
submanifold W, then W contains a (strong) deformation retract of M. Thus
the theorem of [20] is improved slightly:

5.3. CoroLLARY. Let W be a Z-submanifold of an E-manifold M. If M is
deformable into W, then W is a boundary submanifold of M.

54. Remark. Corollary 5.3 is also true for the case (*). In fact, Lemma
5.2 is valid for the case (*) and, moreover, we can assert that g(M x {0}) is a
Z-submanifold of W because the embedding j in the proof can be taken so
that j(M) is a Z-set in W. Thus W contains a Z-submanifold M, which is a
(strong) deformation retract of M. Similarly as in [22], Theorem 1.3, we have
a triple (K, L, Ky) of 1f.d. simplicial complexes such that

(M, W, Mo) = (K| xE, |L| XE, |Ko| X E).

Then |K,| is a deformation retract of |K|. By an easy modification of [20], we
can prove that W is a boundary submanifold of M.

6. The proofs of Theorems III and IV. This section also excludes the
case (x). We first prove the following lemma.

6.1. LEmMMA. Let f: M — N be a surjective map between E-manifolds, and
W a Z-submanifold of M such that M is deformable into W. Then the
projection p: M xI =M is homotopic to a homeomorphism g: M xI - M
such that g(M x \0)) = W and qg~' (W) is an ANR (&), where q: M x1 = Z ()
is the natural map.

Proof. By 5.2, p is homotopic to a homeomorphism ¢g': M xI - M
such that g’(M x {0}) = W. Since M x |0} is an ANR(.#) and a closed subset
of an ANR(.#) g'~'(W), M x {0} is a strong neighborhood deformation
retract of g’'~!'(W), that is, there are a neighborhood V of M x {0} in
g'~!(W) and a homotopy h’: VxI —g'~ (W) such that hi =id, by (V) =M
x {0} and KM x |0} =id for each tel (cf. [12], Ch. IV, Proposition 3.4)..
Let d and d’ be metrics for M and N, respectively, such that

(1) d(x, x)=d'(f(x),f(x)) for each x, x'eM.
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By B(z, r) we denote the open ball in M or N with center z and radius r
with respect to the metric d or d’. We can inductively construct maps v,: M
—(0, 27", neN, so that

2 v,(x) >v,4,(x) for each xeM,

and for each (x, s)eg’~ ! (W)

3 s <v;(x) implies (x, s)eV,

4) § <Up4+1(x) implies h'(i(x, 5)} xI) = B(x, 27" x[0, v,(x)).

By (2), we have a homeomorphism k: M xI — M xI isotopic to id such that
() pk = p,

(6) kIM x {0, 1} =id,

) k(x, 27" =(x, v,(x)) for each xeM and neN.

Then we will show that g =g'k: M xI - M is a desired homeomorphism. It
is obvious that g is homotopic to p. By (6), we have g(M x {0}) = W. Then it
is easy to verify that gg~'(W) is closed in' Z(f) (cf. the proof of 2.1), and
hence qg~ ' (W)eé. To prove that qg~! (W) is an ANR(&), we may show
that it is an ANR(.#). From (5)«7) and (3) it follows that

g ' (W)nk(Mx[0,27Y) c V.
Therefore
Ncgk g ' (W)n(Mx(0,2 ") UN) < gk~ (V);

hence gk~ (V) is a neighborhood of N in gg~! (W) = gk~ ' g~ ' (W). Now we
define

h: gk™' (V) xI =qg~ ' (W) =gk~ g~ (W)

as follows:
h((x, s), t)=qk™ 'K (k(x, s),t) for (x,s)eqgk™ ' (V)M x(0, 1],
h(y,t) =y for yeN.

From (4)«(7) and (1) it follows that

h(f~*(B(y, 27" 1)) x(0, 27"~ 1) x1)
<f7H(BW, 27" 1) x(0, 2" UB(y, 27".
This implies the continuity of h. Since h is a homotopy such that h, = id,

hy(gk~'(V)) = N and h|N =id for each t€l, N is a strong neighborhood
retract of qg~ ' (W) =qk~'g’~ ! (W). Note that

g9~ ' (W)\N =g~ (W)\M x {0}
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is an ANR(.#) because it is open in an ANR(.#) g~ ! (W) = W. By Kruse-
Liebnitz’s Theorem [14], q¢~' (W) is an ANR(.#).

Proof of Theorem III. By the above lemma, we have a homeomor-
phism g: M xI = M homotopic to the projection such that g(M x |0}) c W
and gg~ ! (W) is an ANR(¢#). Since W is a Z-submanifold of M, we can easily
construct a homeomorphism

9: (M xE, WxE) (M, W)

homotopic to the projection by using (A4) and (A3) (cf. [21], Section 4).
Then

(g~ ! xid)o0~': M - M xI xE

is homotopic to the embedding i: M = M xI xE defined by i(x) = (x, 0, 0)
because 6o(g xid)oi is homotopic to id. By 2.1, Z(f) is an ANR(¥), and
hence Z(f) xE is an E-manifold by (A2). Let n: Z(f) xE = Z(f) be the
projection, and c¢: Z(f) = N the collapsing. Obviously, cn: Z(f) xE = N is
a fine homotopy equivalence, and so a near homeomorphism by (A4). Then
we have a homeomorphism k: Z(f) x E = N which is homotopic to nc. Now
we will show that the composition

o—1 —1yid q xid

M—M ><E — MxIxE—Z(f)xE —>N

is the desired map h: M — N. In fact, h is homotopic to cro(g xid)oi = f
and f(X) =Y implies g(M xI) = Z(f), so h(M) = N. Since N is a (strong)
deformation retract of Z (f), k(N x E) is so in k(Z(f) x E) = N. Observe that

h(W)=k(qg~ " (W) xE) > k(q(M x {0}) xE) = k(N x E).

Hence h(W) contains a deformation retract of N. Since qg~!(W) is an
ANR (), g9~ ' (W) xE is an E-manifold by (A2, so h(W) is a submanifold of
N. And, moreover,

(N, h(W)) = (Z(f) xE, g9™ " (W) xE)
= (Z(f) xE xE, g™ " (W) xE xE) = (N x E, h(W) x E).

It is easy to see that qg~!(W) is nowhere dense in Z(f), and hence h(W) is
nowhere dense in N. Therefore, by 5.1, h(W) is a boundary submanifold of
N. Since

qIM x(0, 1]: M x(0, 11 =Z(f)\N

is a homeomorphism, h| M\ W: M\ W — N\ h(W) is a homeomorphism. The
additional statements are easily verified.
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Proof of Theorem IV. In the above proof, the homeomorphism
k: Z(f) xE — N can be ¥ -near to cn for a given open cover ¥ of N. The
projection p': M xI xE =M is a near homeomorphism, whence f~!(¥)-
near to a homeomorphism g': M xI xE —- M. For each xeM there is some
V e ¥’ such that

x(=g'g" '), pg " (x)ef (V).
Therefore

i(x), g ') ef" (V) xIxE =(gxid) 'z~ c™1(V),
whence
f(X)(=cno(g xid) 0i(x)), cno(q xid)og'~ ! (x) e V.

This implies that f is f -near to cmo(q xid)og’~!, so st(¥ )-near to
ko(g xid)og’~'. Then M, =g (M x |0! xE) is a boundary Z-submanifold
of M and

ko(q xid)og’~ ' (M) = k(N x E)

is a boundary submanifold of N. Thus we have the result.

7. Non-metrizable infinite-dimensional manifolds and Q-manifolds. Our
arguments in this paper are also valid for manifolds modeled on

R® =dirlimR" and Q% =dirlimQ",

that is, R®-manifolds and Q*-manifolds. However, some modifications are
necessary.

As seen in [16], Section 4, we cannot use Z-sets as a characterization of
R*- or Q%-deficient closed sets in R®- or Q*-manifolds. The author [24]
introduced D-sets which characterize R®- or Q®-deficient closed sets. We
have need to replace the words “Z-set” and “Z-submanifold” by “D-set” and
“D-submanifold”, respectively. The R®- and Q*-versions of (AQ) are due to
[18], Theorems 3.3 and 3.4 (cf. [24], 7.3).

By %™ and % we denote the classes of all (countable) direct limits of
finite-dimensional compact metrizable spaces and of all (countable) direct
limits of compact metrizable spaces. By [24], 4.1, the classes #%™ and 7%
are the classes of all spaces which can be embedded in R® and Q* as closed
sets, respectively. The R*- and Q®-versions of (A1) are Theorem II1.2 (b) or
Proposition I11.2 in [7]. By Dugundji’s Extension Theorem (see [12], Ch. II,
Theorem 14.1, and [13], Theorem 10.1), R® and Q® are AE(.#")’s, where
A is the class of all M-spaces introduced by Hyman [13]. Note that
9% o M < M. Spaces in 26" or 9% are ANR(2%“)s or ANR(2%)’s if

9 — Colloquium Mathematicum 56.2
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and only if they are ANR(.#")s. The R®- and Q®-versions of (Al) are
obtained by Hanner’s Theorem ([12], Ch. II, Theorem 17.1; cf. [7], Corollary
I1.4).

In the R®- and Q*®-cases, we use the mapping cylinder with the usual
quotient topology. By Z, we denote the mapping cylinder of a map f: X
— Y with the quotient topology. It is not difficult to see that if X and Y
belong to 2% or 2%, then so does Z,. By Hyman’s Theorem ([13],
Theorem 11.1), if X and Y are ANR(2%“)s or ANR(2%)’s, then so is Z I

Using the author’s characterizations of R®- and Q®-manifolds ([23],
Theorem 1.3), we can easily obtain the versions of (A2) and (A2). The
versions of (A3) and (A4) have been established by Liem [15]-[18] (see also
[23] and [24]). The versions of (A5) are proved in [8] and [9] (cf. [23)).
Then proofs in Sections 3-5 apply to R®- and Q*-manifolds. Thus we can
obtain the same results for R®- and Q*-manifolds.

Our results are also valid for compact Q-manifolds because all state-
ments in Section 1 are true ((A4) is a little different statement; cf. [6]). In
proofs, some changes might be needed but easy. For Q-manifolds, refer to
[3]

There is no difference between (Q x [0, 1)}-manifolds and Q-manifolds
([3], Theorem 12.1). However, in general, M xQ x[0, 1) M for a Q-
manifold M. For a Q-manifold M, M xQ x[0,1) =~ M if and only if M
x[0, 1) @ M. Such a Q-manifold is said to be [0, 1)-stable. Our results are
valid for E = Q x[0, 1) and [0, 1)-stable Q-manifolds because all statements
in Section 1 are true.

Acknowledgment. In the first manuscript, the author established the R®-
version of Brown’s mapping theorem by an inductive method, and then
proved the o-version by some modifications with metric arguments. The Q*®-
and Z-versions were obtained as corollaries to R*- and o-versions. (Here o
and X are the subspaces of the separable Hilbert space [, which are linear

spans of the usual orthonormal basis and the Hilbert cube J[J[—27", 27"]
neN
c I,, respectively). By the f-d cap set arguments in [4], the l,-version was

proved as a completion of the o-version. However, this original proof cannot
apply to more general (non-separable) spaces. When the author visited the
Banach International Mathematical Center at Warsaw for the Topology
Semester 1984, H. Torunczyk suggested to him that a mapping cylinder is
available for the proof of the infinite-dimensional version of Brown’s map-
ping theorem (Theorem I). By using mapping cylinders, it was succeeded to
generalize Theorem I to Theorems II, III and IV. In (A2) and (A2) we
assume that X is complete-metrizable in the case (), but it is unknown
whether this assumption is necessary or not. Thus we do not know whether
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Theorems III and IV are valid in the case (). This was also pointed out by
Toruniczyk. The author wishes to express his sincere thanks to Henryk
Toruniczyk for his kind and valuable suggestions.
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