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All graphs in this note are simple, that is contain no loops and multiple
edges. The cardinality of a maximum -sized independent set of vertices in G
is denoted by a(G) and the cardinality of the maximum -sized complete
subgraph of G is denoted by w(G) and called the density of G. Note that
a(G) = w(G), where G is the complement graph of G.

In the paper [1], it was proved (Theorem 2) that in the class 2 of
graphs whose components are complete graphs K, , Kp,, ..., Kp, and

which is closed with respect to taking a complement (that is, Ky, m,,...m, € &),
we have

(1) S(n) = min(«(G)+a(G)) = min(x(G)+ @(G))
= min(0(G)+ o (G) = 2[\/n] +¢&.,

wherea,=0forq=ﬁ—[ﬁ]=0,s,,=1forqséand ga=2forq>4,n
=|G| = |G| =my+m,+ ... +m,. There, we posed also the problem of
determining all graphs for which this formula holds.

It is easy to see that (1) does not hold in the class ¥ of all simple
graphs. Looking for bounds in other subclasses of ¥ (closed with respect to
taking a complement) we observed that this bound is connected with Ramsey
numbers related to a given class.

Let o be a subclass of ¥ closed with respect to taking a complement.
The Ramsey number r(K, 5, n,, n,) denotes the minimum integer such that
if w(G)<n, then w(G)=>n, for every Ges¥, which has at least
r(K, s, n,, n,) vertices. We assume here that n, < n,.

In the present note we restrict attention to the class £ and relate the
calculation of S(n) to Ramsey numbers r(K, £, n,, n,). Hence we obtain a
different proof of Theorem 2 from [1]. Let p(n,, n,) denote r(K, 2, n,. ny).
We first prove the following theorem:
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THEOREM 1. There holds
p(ny, ny)) =(n;—1)(ny—1)+1.

Proof. Let Ge®? w(G)<n,—1, |G| >(n;—1)(n,—1), and let G
= K my..mg- Then the number g of components of G is equal to at least

n,, thus for the complement G we have w(G) > n,. If G = K,y m,

from the assumption w(G) <n,—1 it follows that the size of a largest
component in G is equal to at least w(G) = n,. If |G| = (n, —1)(n,—1) then,
assuming that w(G) = n, — 1, we obtain G for which ¢ =n,—1, and m; = m,
=...=m,=(n—1) and |G| =|G| =(n,—1)(n,—1). Hence, taking into
account that for every n there exists Ge £ such that |G| = n, the thesis of the
theorem follows.

Theorem 1 results in a crude bound to r(K, 5, n,, n,) for any class
H o 2P, in particular we have r(K, 9, n,, ny) = (ny—1)(n,—1)+1.

In the class #, by the obvious inequality (n, —k—1)(n;+k—1)+1 <
(n,—1)2+1 we have the following bound:

LEMMA 1. There holds p(n,—k, n,+k)<p(n,, n,) for every k
=1,2,...,n, =2

Analogously, by the inequality (n,—k—1)(n,+k)+1<(n,—1)n, +1
which holds for every k > 0 we have the following bound:

LEMMA 2. There holds p(n,—k, ny+k+1) < p(ny, ny+1) for every k
=1,2,...,n -2

If Ge# and |G| = p(n,, n,), then from the definition of p, w(G) < n,
implies w(G) = n,. From the existence of the graph G, such that w(G,) = n,
—1 and w(G,) = n; we have w(Gy)+w(Gy) = 2n, —1. By Lemma 1, if w(G)
=n, —k then w(G) = n,—k for k=1, 2, ..., n,—2. Using now the obvious
inequality (n, —k)+(n, +k) = (n, — 1)+ n,, we obtain min(w(G)+w(G)) = 2n,
-1

Analogously, we can prove that if Ge 2 and |G| = p(n,, n; + 1) then we
have min(w(G)+w(G)) = 2n,.

Thus we have proved

THEOREM 2. Let Ge . If n=|Gle(p(n,, ny), p(ny, ny+1)) then S(n)
= min(w(G)+ w(G)) = 2n, —1 and if ne(p(ny, ny+1), p(n,+1, ny+1)) then
S(n) = 2n,.

Probably, Lemmas 1 and 2 are satisfied for at least every subclass J# of
% such that (similarly as in £ or %) for every n and for every k =1,2, ..., n
there exists a graph Ge such that |G| =n and w(G) = k. If for a given
class »# one could derive an explicit formula for r(K, ¢, n,, n,) as in
Theorem 1, such a formula would allow then to prove counterparts of
Lemmas 1 and 2, and Theorem 2.

A somewhat different situation may arise in a class »# which does not



RAMSEY NUMBERS 347

satisfy for every n the condition that there exist graphs with sufficiently large
density. As an example may serve the class & of self -complementary graphs,
i.e. Ge & if and only if G is isomorphic with G. Such graphs exist only for n
= |G| or n—1 divisible by 4. From the condition that a graph and its
complement are isomorphic we get only Ramsey numbers of the form
r(K, .. m, m). Let us denote r(K. .¥. m. m) simply by s(m). Hence, s(m) is
the minimum |G| such that every G e %, |G| = s(m), contains K,,. In this class
of graphs, S(n) assumes only even values. The values of r(K, ., m, m) imply
s(3)=8,5(4)=20 and S4) =S(5) =4, SB)=S5S9) =S(12) =S(13) = S(16)
=8(17) =6, S(20) = S(21) = 8. For n > 12, this is only a conjecture based
on the hypothesis that among the graphs in % for which an even minimum
value of S(n) is achieved there exist self-complementary graphs for the
appropriate values of n and that for odd values of S(n) there exist self-
complementary graphs G such that w(G)+w(G) = 2w (G) = S(n)+ 1.

The above considerations lead to an interesting problem of investigating
the subclass %, = G in which the value of S(n) is minimum. Examples of
such graphs allow to conjecture that they cannot have a small (or large)
number of edges. This guess appears however to be false if one considers
examples of disconnected graphs in %,. Let us consider G = K, UK, UK,
for n = 6 which has three edges. For n =9 we have G = C; U K, U K, with
7 edges, and for n = 10 we have G = C5 U C5 with 10 edges. The number of
edges increases here along with n, but the increase is very slow. The
investigation of the subclass of graphs which belong to %, and which for a
given n have the smallest number of edges seems to be also interesting. For
|G| = n =4 we have three graphs: K, U K,, Py and C, which belong to %,;
P, is self-complementary. For n =5 we have only one graph Cs with S(5)
=4. This graph is also self-complementary and we have 2w(Cs) =6
= max (0 (Cs)+»(Cs)). For n = 6 we know already five disconnected graphs
which belong to %,: K, UK, UK,, C3uC;, CsuK,, C4,uUK,, PyUK, as
well as several connected graphs. It is interesting to note that for n =7 we
have only one disconnected graph Cs UK, in %, and that for n = 8 there
exists no such graph.

The existence of at least one Hamiltonian graph in %, for each n seems
to be quite certain. A more difficult problem presents an answer to the
question whether for n > 4 there exists a self-complementary Hamiltonian
graph with minimum value of S(n) (P 1300). The construction of such graphs
for n=35, 8, 9, 12 presents no difficulty.
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