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1. Introduction. The main purpose of this paper* is to show how
A. Robinson’s generic structures for infinite forcing within a class 2 of
structures can be obtained using standard model-theoretic techniques
(as indicated in [3], but with some simplifications).

It has been observed by various people that there are strong similar-
ities between the behaviour of the class of generic structures and the class
of existentially complete structures, with regard to such notions as ultra-
products and elementary classes. For example, one is an EC, iff the other
is, in which case they coincide (see, for example, [2]). We will present
two different iterations of the notion of existential completeness, either
of which yields a characterization of the generic structures in case 2 is
closed under unions of chains. In fact, if 2 is inductive, the two iterations
coincide; for general 2, they may differ and reflect to different degrees
the behaviour of the generic structures.

For convenience, we recall a few basic definitions and facts from
Robinson’s paper [1]. Let X be a class of structures of some fixed simi-
larity type. If A e 2 and ¢ has constants from A4 (i.e., ¢ is defined in 4),
the relation A |= ¢ (A forces ¢) is defined by induction on the structure
of formulas as follows:

(i) If ¢ is atomie, A |= ¢ iff A |= ¢.

(ii) If @ is pyAy, Al=¢ iff A=y and A |= 4.

(iii) If ¢ is yvy, A= ¢ iif A=y or A |= y (or both).

(iv) If p is Jwy(x), 4 |= ¢ iff, for some constant ¢ denoting an element
of 4, A= y(c).

(v) If p is 1y, A |= ¢ iff for no extension B of A in X is it the case
that B |= v. |

A structure A in X is said to be generic if, for any ¢ defined in A,
A |= ¢ iff A |= ¢. It is easy to see that if A and B are both generic and
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A = B, then A < B, and, furthermore, that any generic structure is
existentially complete in X, i.e. any existential sentence defined in ~ which
holds in some extension of 4 in X' already holds in A. Robinson shows
in [1] that if 2’ is inductive, then every A in X2 has an extension B in X
which is generic. '

By an 3, (or V,) formula we mean a quantifier-free formula. Assum-
ing that 3, and V, are defined for n» < m, we define 3,, as the union
of V,,_, and the set of all formulas of the form 3z, ... z,y, where yV,,_,,
and V,, as the union of 3,,_, and the set of all formulas of the form
Va,...Vz,y, where yed,,_,. If A and B are structures, we write 4 <, B
to mean that A < B and that, for every formula ye V, with constants
from A4, A =y iff B |= y.

We establish the convention that all structures are in X'; thus, when
we say ‘‘there exists an extension B of A...””, we mean ‘‘there exists an
extension B of 4 in 2...”.

2. me-existentially complete structures.

Definition. Any structure is 0O-existentially complete (0-e.c.). As-
suming that “n-existentially complete’’ is defined for » < m, we say that A
is m-existentially complete if, for any extension B of A, there exists an
extension C of B which is (m—1)-e.c. and such that A <,, C.

ProrosIiTION 1. If A i8 m-e.c., then A is n-e.c. for any n < m.

Proof. Clearly, any 1-e.c. structure is 0-e.c. Assuming the result for
r << m, let A be m-e.c. Then, for any B o A, there exists a C > B which
is (m—1)-e.c. and such that A <,, C. By induction hypothesis, C is
(m —2)-e.c., and, clearly, 4 <,,_,C. So A4 is (m—1)-e.c., and hence, by
induction hypothesis, n-e.c. for all n < m.

PRrROPOSITION 2. Suppose m > 1. If A is m-e.c., B is (m—1)-e.c. and
A < B, then A <, B.

Proof. If A is 1-e.c. and B o A, then there exists a C o B such that
A <, C. Then, clearly, A <; B. Assuming the result for n < m, let A
be m-e.c., and B an (m —1)-e.c. extension of A. Let C be an (m —1)-e.c.
extension of B such that A <,, C. Suppose ypeV,, is defined in 4, 4 |=y
and B non |=y. Then B|= 1, and Ty is equivalent to an element
of 3,,. By Proposition 1, C is (m—2)-e.c., s0, by induction hypothesis,
B <,_, C; therefore, C |= Typ. But C |= y since 4 <,, C.

For the rest of this section we assume that 2 is inductive.

The connection between generic and m-e.c. structures is the next
result.

THEOREM 1. For any A, A is generic iff A is m-e.c. for all m.

Proof. Suppose, first, that A is generic. We prove that A is m-e.c.
for all m by induction on m. For m = 1 the result is clear because any
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generic structure is existentially complete and any existentially complete
structure is obviously 1-e.c. Assuming the result for all n < m, suppose
that A is generic and let B be any extension of A. Let (by inductivity) C
be a generic extension of B. Then, by induction hypothesis, C is (m —1)-e.c.,
and, clearly, 4 <, C because, in fact, A < C. So A4 is m-e.c., and the
induction is complete.

For the converse, suppose that 4 is m-e.c. for all M and let B be any
generic extension of A. Then, by the first part of the proof, B is m-e.c.
for all m. Therefore, by using the prenex normal form and Proposition 2,
we can conclude that A < B. We have shown that 4 is an elementary
substructure of any generic structure extending it. Therefore, A is generic:
an easy induction on formulas shows that it suffices to consider 1y defined
in A such that A = -y and prove A |= 7jy. So suppose A non|= Ty.
Then some extension B of A forces y; if C is (by inductivity of X) a generic
extension of B, then C = y, so C |= y. But A < C, so C |= 1y, a contra-
diction.

Remark. We have just shown that if A =« B and A and B are both
m-e.c. for all m, then A < B. This is the analogue of the fact that A < B
implies A < B for A and B generic, in the forcing-theoretic set-up.

It immediately seems reasonable that we should be able to take
“m-e.c. for all m’ as our starting point and thus, for example, obtain
forcing companions (cf. [1]) without using any forcing. The main obstacle
is, of course, that we would have to prove that the structures m-e.c. for
all m are cofinal in 2. We will do so without using forcing, but first we
give a result that elucidates the relationship between forcing and being
m-e.c. for a particular m.

THEOREM 2. Fiz m. Then A is m-e.c. iff, for any ¢ in V,, defined in A,
Ao iff Al=o.

Proof. For m = 0, the result is trivial. Assume it proved for all
n < m. Suppose A is m-e.c. and pe V,, is defined in 4. Say

¢ =Va,... Vo, 9(xy,...,2) with p in 3,,_,.

Suppose 4 |= ¢. To show that A |= ¢ we must show that, for any b,
in any B, > 4,, some extension C, of B, forces Va, ... Vo, p(b,, x5, ..., x,).
Take for C, an (m—1)-e.c. extension of B, such that 4 <,, C. To prove
that C, does the job we must show that, for any b, in any B, o C,, some
C, > B, forces Vu, ... Vx,9(b,, by, %3, ..., x,). Take for C, an (m —1)-e.c.
extension of B, such that 4 <,, C,. Continuing in this way we arrive at

AcB,cC,cB,clycBycl3c...c B, cC,

(b,.-E B; fOI‘ 'L = 1’ 2, ...,1‘),
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where C, is an (m —1)-e.c. extension of B, such that 4 <,, C,, and we
must show that C,|= y(by,..., b,). Now C, |= ¢ since eV, is defined
in A, so, in particular, O, |= y(b,, ..., b,). Since, by induction hypothesis,
forcing and satisfaction coincide in C, for statements in V,,_,, it is clear
that they coincide for statements in 3,,_,. Therefore, C, |= y(b,, ..., b,).

Now suppose A4 |= ¢. To show that A |= ¢ we must prove that, for
any by, ..., b, in 4, A = y(by, ..., b,). Certainly, some extension B of 4
forces w(b,,..., b,), so, letting C be an (m —1)-e.c. extension of B such
that 4 <, C, we have C |= y(b,, ..., b,), so since forcing and satisfaction
coincide in C for sentences in 3,,_,, C = y(b,,...,b,). Since 4 <,, C,
A = p(by, ..., b,), as desired.

For the converse of the theorem, suppose that, for any ¢ in V,, defined
in A, A |=¢ iff A |= ¢. Let B be any extension of 4. Let C be a generic
extension of B. Then, supposing that an element ¢ of V,, is defined in A
and A |= ¢, we have A |= ¢ whence C |= ¢ and so C |= ¢. Hence 4 <, C
and the proof is complete.

Remark. When we introduced C in the last section, we used the
cofinality in X' of the generic structures, so our proof as it stands uses
a result that depends on a forcing argument. Once we have proved the
cofinality of the m-e.c. structures we can take for C any m-e.c. extension
of B and use the first half of the theorem to conclude C |= ¢, thus removing
the dependence on a forcing argument.

PROPOSITION 3. For any m, the union of an increasing chain of m-e.c.
structures s iiself m-e.c.
Proof. For m = 0, this is clear. Assume the result for all n < m.

Suppose our chain is {4,},.;, and B is an extenmsion of 4 = (J A4,.
p<

Let C be an (m —1)-e.c. extension of B such that 4, <,, C. Suppose that ¢
is in V,,, and is defined in 4, and that 4 |= ¢. Then ¢ is defined in some A;
since, by induction hypothesis, A is (m—1)-e.c., Proposition 2 yields
A, <, 4, s0 A, |=¢. But, also by Proposition 2, 4,<,, C, so C |= ¢. We have
shown that A <,, 0, so 4 is m-e.c.

Remark. Thus the class of structures m-e.c. for all m is inductive.
This is our counterpart of Robinson’s result (see {1]) that the class of
generic structures is inductive.

THEOREM 3. For any m, the class of m-e.c. structures is cofinal in 2.

Proof. For m = 0, this is trivial. Assume that, for any » < m, the
class of m-e.c. structures is cofinal in 2.

Given A in X, let A° be an (m —1)-e.c. extension of 4. We first con-
struct an (m —1)-e.c. extension A' of A°such that any ¢ in 3,, which is
defined in A° and holds in some (m —1)-e.c. extension of A holds already
in A'. To do this let {g,},., be a listing of all the formulas in 3,, with
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constants in A°. If ¢, holds in some (m —1)-e.c. extension of A’ let A) be
such an extension; otherwise, let A) = A°.

Now suppose p < A and assume that A? has been defined for all
& < . If uis a successor ordinal x = £ 41 and ¢, holds in some (m —1)-e.c.
extension of A}, let A% be such an extension; otherwise, let A = A.
If x is a limit ordinal and ¢, holds in some (m —1)-e.c. extension of |J A%,

let A be such an extension; otherwise, let f<n
48 = U AL
<y
Let us assume that
Al = U A,
p<i

Now suppose some ¢, holds in some (m —1)-e.c. extension of A'. Then,
if 4 = &+1, ¢, holds in some (m —1)-e.c. extension of A}, and if u = g,

then ¢, holds in some (m —1)-e.c. extension of () A}. Therefore, by con-
f<u

struction, A |=¢,. An easy induction using Proposition 3 shows that
each A° is (m —1)-e.c., so, by Proposition 2, A' |= ¢,. Therefore, A' has the
desired properties.

Now, let A% be an (m —1)-e.c. extension of A' obtained from A® just
as A' was obtained from A°; in this way form a chain 4°c A' < A% ...
and let B be the union of this chain. We claim that B is m-e.c.

Suppose that ¢ is in 3,, and defined in B, and that ¢ holds in some
(m —1)-e.c. extension of B. Then ¢ is defined in some 47, and ¢ now holds
in some (m —1)-e.c. extension of A’*!, so, by construction, A7*! |= ¢. Since
B is (m —1)-e.c. by Proposition 3, Proposition 2 yields B = ¢.

Let C be any extension of B and let D be any (m —1)-e.c. exten-
sion of C. Then, by the previous argument, B <, D, so B is m-e.c. This
completes the proof.

COROLLARY. The structures ‘‘“m-e.c. for all m’ are cofinal in Z.

Proof. Given A, let A' be a 1-e.c. extension of 4; let A*> be a 2-e.c.
extension of A'; let A® be a 3-e.c. extension of 4%; and so on. Let B be
the union of the chain so formed. For any m, all the 4’ for j > m are
m-e.c., 80- B is m-e.c. by Proposition 3.

An interesting question regarding the classes of m-e.c. structures is
that of when the sequence degenerates, i.e. stops at some point m. An
easy sufficient condition is given by the following

THEOREM 4. Let X denote the set of all sentences in the language appro-
priate for X which hold in all generic structures in X. Suppose that, for any
predicate ¢(x,, ..., x,), there is a predicate v, in 3,, such that

IF - Vo, . Vo (g, ..y @) o (@, ..., 2,).

Then any m-e.c. structure is gemeric.



12 D. SARACINO

Proof. Let A be m-e.c. and let B be a generic extension of 4. Suppose
Bl=3xp(x, a,,...,a,) with a;in A.Then, for some bin B, B |= ¢ (b, a,,...,a,),
so, by hypothesis, B |= y,(b, ay,...,a,) with ¢, in 3,. Therefore,
B|=3xy,(x, a,, ..., a,), and since 4 <,, B, we have A = Ay, (2, a,, ..., a,).
So, for some a in 4, A |= y,(a, a,, ..., a,); therefore, B = y,(a, a4, ..., a,),
so B|=g¢(a,a,,...,a,). By the Tarski-Vaught test, 4 < B. Therefore,
A is an elementary subsystem of any of its generic extensions, so it is
generic, as in the proof of Theorem 1.

3. Weakly m-e.c. structures. Another reasonable iteration of the
notion of existential completeness can be given as follows. (We drop the
assumption that 2 is inductive, unless otherwise noted.)

Definition. Any structure is weakly 0-e.c.; assuming that the class
of weakly m-e.c. structures has been defined for all n < m, we say that
a structure is weakly m-e.c. if it is weakly (m —1)-e.c. and has the property
that, for any weakly (m —1)-e.c. extension B, 4 <, B.

Notice that, for any class 2, both the 1-e.c. structures and the weakly
1-e.c. structures are precisely the existentially complete structures.

We will show that, for an inductive X, ‘“m-e.c.” and ‘‘weakly m-e.c.”
coincide for all m. However, if 2 is not assumed inductive, then any m-e.c.
structure is weakly m-e.c., but the converse may fail. Also, for any 2,
not necessarily inductive, an m-e.c. structure 4 has the property that,
for any y in V,, defined in it, A |= y iff A |= y; this may fail for a weakly
m-e.c. structure A.

THEOREM 5. (i) For an arbitrary class X, not assumed inductive, and
for any m, any m-e.c. structure is weakly m-e.c.

(ii) For X inductive and for any m, a structure ts m-e.c. iff it is weakly
m-e.c. \

Proof. (i) By induction. For m = 0, the result is trivial; assume it
proved for n < m. Let A be m-e.c.; then A is (m —1)-e.c., so, by induction
hypothesis, 4 is weakly (m —1)-e.c. Let B be any weakly (m —1)-e.c. exten-
sion of A; we must show that A <,, B. Let C be an (m —1)-e.c. extension
of B such that A <,, C. By induction hypothesis, C is weakly (m —1)-e.c.,
0, by the definition of the weakly m-e.c. structures and by the fact that B
is weakly (m—1)-e.c., B<,,_,C. We have B <,,_,C and 4 <, C; so
A <,, B. This completes the induction. ,

(ii) By (i), it suffices to show that any weakly m-e.c. structure is
m-e.c. So, let B be any extension of a given weakly m-e.c. structure 4;
by Theorem 3, let C be an (m —1)-e.c. extension of B. By part (i), C 18
weakly (m —1)-e.c., so since A is weakly m-e.c., A <,, C. Therefore, A is
m-e.c.

THEOREM 6. Let X be arbitmry and A an m-e.c. structure. Then, for
any v in V,, defined in A, A |= vy iff A= vy.
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Proof. All we have to do is to examine the ‘‘only if” part of the
proof of Theorem 2 to see that we did not use the inductivity of X' to
prove it.

Example. Let A, be an algebraically closed field of characteristic
zero. Let Ay A, < 4, < ... be a chain of extensions of 4, such that

(i) for any ¢ > 0, there is an irreducible polynoinial over A4; which
has a root. in some A; for j > ¢ but no root in 4;, and

(i1) for any 4 > 0, there is an irreducible polynomial over A; which
has no root in any A4;.

Let X2 consist of the 4;, 0 <1< o.

It is clear, by condition (i), that no A; for 7> 0 is existentially
complete in X. Since A, is existentially complete in X, it follows that A,
is weakly m-e.c. for all m. However, 4, is not m-e.c. for all m; in fact, it
is not even 2-e.c., because, for example, 4, is an extension of it which has
no 1l-e.c. extension C such that 4, <, C (4, has no 1-e.c. extensions at all).

We also note that although A4, is weakly m-e.c. for all m, there exist
V.-sentences y such that 4, = y but 4, does not force . For let a,z" +...
+ a,x + ay be a polynomial with coefficients in 4, which has no root in
any A;. Then A, = v, where

p = Vy,... Vy,dz(y,2" +... +y,0+y, = 0),
but if 4,|= v, then, in particular, some extension A; of A, forces

dz(a, 2" +... + a2+ ay = 0),
S0
A; = 3Jx(a,a" +... + a2+ ay = 0),
a contradiction.
In particular, of course, 4, is not generic.

In closing we remark that results somewhat similar to ours have
been obtained independently by G. Cherlin (as yet unpublished). Cherlin’s
notion of X'-persistent completeness seems (at least superficially) some-
what more akin to the ideas in this section than to those in Section 2.
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