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The relationship between groups and graphs has been studied inten-
sively (see [3], Chapter 14). Frucht [1] showed that, for any finite group A,
there are infinitely many non-isomorphic cubic graphs whose automor-
phism groups are isomorphic to A. This result was later generalized by
Sabidussi [8] to include other classes of graphs. Some attempts have
been made to characterize the groups of special classes of graphs. Kagno [4]
catalogued the groups of all graphs with at most six points; both Pélya [6]
and Prins [7] characterized the automorphism groups of trees. Our object*
i to study a class of graphs which have a specified group structure, namely,
those graphs whose non-trivial automorphisms are all of order 2.

For graph theoretic terms not defined here, see [3]. We shall denote
the (automorphism) group of a graph G by I'(G). A group I' is boolean
if every non-trivial element has order 2. This terminology is classical and
is mentioned in an early paper by one of us [2]. A boolean graph has a bool-
ean group; a graph whose group consists of the identity permutation
alone is an tdentity graph. A fized point of a graph G is invariant under
every automorphism of G.

General properties of boolean graphs. All boolean graphs with p <5
points are drawn in the Appendix. Following standard notation, let S,
be the symmetric group of degree p and let A [B] denote the wreath prod-
uct of two permutation groups A and B. As in [3], p. 163, let A +-B
denote their direct sum.

THEOREM 1. A graph G is boolean if and only if every component 8
boolean, and all the components are distinct exceptl, possibly, for pairs of
isomorphic identity graphs.

* This research was supported in part by grant AFOSR 73-2502 from the U.S.
Air Force Office of Scientific Research, by grant NRC A-7328 from the National
Research Council of Canada, and by a NATO Postdoctoral Fellowship.
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Proof. Let G be given by
G = kIGIUk2G2U cee UknGﬂ’

where the components @; (1 < ¢ < n) are distinet and each k; > 1. Then
as in [3], p. 166,

I(@) = 8, [T(G)]+ ... +8, [T(G,)].

Clearly, I'(G) is boolean if and only if each Sk, [I'(G;)] is boolean.
Moreover, S,c]. [I'(G;)] is boolean if and only if k; = 1 and G; is boolean
or k; = 2 and @G; is an identity graph.

COROLLARY la. Let G and H be connected graphs. Then their union
8 boolean if and only if G and H are distinct boolean graphs or both are iden-
tity graphs.

COROLLARY 1b. Let G and H be boolean graphs. Then their join G + H
i boolean if and only if the components of GUH are distinct except, possibly,
for pairs of identity graphs. '

Proof. It suffices to note that G+ H = GUH (see Zykov [9]), and
hence I'(G+ H) = I'(GUH).

It is of interest in connection with boolean graphs to relate the struc-
ture of the adjacency matrix to the automorphism group. The adjacency
matrix A = A(@) = (a;) of a graph G with points v, v5,...,v, i8 de-
fined by

1 if »; is adjacent to v,

Y 0 otherwise.

The next result is given in [5]. Recall that the eigenvalues of a real
symmetric matrix are real.

THEOREM 2. If the eigenvalues of A (@) are distinct, then I'(G) i8 boolean.

The converse of this theorem is not true, as demonstrated by the
graph in Fig. 1 which is boolean but, nevertheless, has —1 as a double
eigenvalue, as can be verified at once from its characteristic polynomial.

Tig. 1. A boolean graph without distinct eigenvalues

Boolean trees and forests. The following characterization of boolean
trees is an immediate consequence of a theorem of Prins [7], p. 48.
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THEOREM 3. A tree T is boolean if and only if exactly one of the following
conditions is satisfied:

(i) If T has no fized point, then I'(T) ~ 8,.

(ii) If T has a fived point, then, at each point, T has at most two similar
branches and both such branches in any pair are isomorphic rooted identity
trees.

Note that I'(T) is isomorphic to S, if and only if T consists of two
isomorphic rooted identity trees with a line joining their roots.

A minimal boolean graph with p points has the smallest possible
number of lines. According to Theorem 1, a forest F' is boolean if and only
if all the trees of I are distinct boolean trees except, possibly, for pairs
of identity trees. The concept of a boolean forest is of interest in connection
with minimal boolean graphs, although such a graph is not necessarily
a forest; see G; in Fig 2.

6 1” a 1] G%:I{ Y

Fig. 2. Three minimal boolean graphs with 15 points

A linear forest (for example, G, of Fig. 2) is a forest whose components
are paths. Let P, be the path with » points. Since every path is boolean
and (except for P,) has a non-trivial automorphism, it follows from Theo-
rem 1 that a linear forest is boolean if and only if it consists of paths of
distinct lengths except, possibly, for two isolated points. We turn now
to a characterization of minimal boolean linear forests (mblf).

Note first that to each boolean linear forest with p points there
corresponds a unique partition of the integer p whose parts represent
the number of points in the respective paths. Moreover, every partition
of an integer p into distinct parts except, possibly, for two 1’s corresponds
to a unique boolean linear forest. Thus, we shall speak of boolean linear
forests and boolean partitions interchangeably, and assume that the parts
of a boolean partition are arranged in order of non-decreasing size. If
ry < 1y < ...< 1 is the partition corresponding to a boolean linear forest F
with p points, the number ¢ of lines of F is

¢=Y -1 =p—"

N

i=1

I

By the size of a boolean partition we shall mean the number of lines
in the corresponding boolean linear forest.
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THEOREM 4. Let n(n) denote the number of partitions of the integer n,

and let
- [1+V8p—7]
1 2 F

Then every p-point minimal boolean linear forest has the size s = p — k.
Furthermore, the number of such mblf’s is equal to

az(p—l—(;‘)).

Proof. We note that, by definition, k satisfies

—1+V8p—17 1+V8p—17
o VopT 1 VepT

Now, if there exists a boolean linear forest of size s < p —k —1, the
points must be partitioned into k41 paths, two of which may be isolates,
but the remaining paths must each have a different length. Consequently,
we must have

k
k(k+1
p>1+2i=1+—(2+—).

t=1

Substituting the lower bound for k¥ from (1) yields

1[{—1+V8p—7\[1+V8p—7
e T L .

=P,

obviously a contradiction.
On the other hand, an mblf of size s = p—k is given by selecting

paths of order
k+1

rn=1, r,=i—1for 2<<i<k—1, and rk=p—2r,-.
=1

This forest is boolean provided r, > k—1. But, in fact, we observe
that

k—1 1/ —14+V8p—T7\[—3+V8p—7
g r"zp_l_( 2 )21’—1—5( 2 )( 2 )
—1+V8p—17
= +'/2p >k—1

Thus, we have constructed an mblf of size p — k.
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To count the number of mblf’s, we shall establish a one-to-one corre-
spondence between them and partitions of p —1— (Z) Every mblf has

an isolate, for, if not, the removal of an endline from the smallest path
would produce an mblf with one less line. Thus, if »,,r,,..., 7, is the
partition of this mblf, then r, must be 1, and the remaining r,’s provide
a partition of p —1 into ¥ —1 distinet positive parts. Consequently, each
ri<ry for 2<i<<k—1. Let m; =7, ., —¢ for 1<i<k—1. Now we
see that

k-1

En,- =p—1—(g).

i=1

Furthermore, we claim that these n,’s are arranged in non-decreasing
order, for, if n; < n;_,, then

T,‘-+l—"i< 7‘,-—’1:—}—1 or Ti+1<7‘,~

contradicting »;,, > ;. Thus, from each mblf we construct a unique

partition of p —1 — (7;)

Conversely, we observe that

p—1_(’2“)<p_1_1( —1+V§§——“7')(_3+,/gﬁ)

2 2 2
—1+V8p—
_ +Z—p T <.

Thus, any partition of p —1 — (’;) has at most k¥ —1 parts, 80 we may
reverse the above procedure in the following manner. Take any partition
of p—1— (’;) arranged in non-decreasing order. If necessary, insert

leading terms of zero until there are k—1 terms in the sequence 0 < n,

<Ny <...<My_,. Define r, =1 and r,,, =i+n,; for L<i<k—1.
Clearly, the r;’s form a boolean partition of p, completing the corre-

spondence. Consequently, the number of minimal boolean forests is

given by
ﬂ(p —1- (g))

as asserted.
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Appendix. Boolean graphs with at most 5 points.
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