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1. Introduction and preliminaries

1.1. A finite positive Borel measure u on G = T or R is ergodic with
respect to some countable subgroup D, acting by translation on G, when

for every Borel set E which is invariant under the translations by ele-
ments of D, either u(E) = 0 or u is concentrated on E.

We shall also say that p is D-ergodic. G. Brown and W. Moran ([1],
[2]) pointed out this property for infinite convolution products of discrete
measures and the classical Jessen—Wintner Purity Law, which asserts that
such measures are either discrete, or absolutely continuous, or continuous
and purely singular, is an immediate consequence. They proved moreover
the following strengthening (1™ denotes the nth convolution power of p):

GENERALIZED PURITY LAwW. Let u be a finite positive Borel measure
on T or R. If u is ergodic with respect to some countable subgroup, then
either u is discrete, or there erists a positive integer n such that u" is
absolutely continuous, or u™ is singular with respect to any translate of pP
whenever n # p.

The original proof of this result, which can also be found in [4] and [6],
uses J. L. Taylor’s critical point theory for the Gelfand spectrum of convo-
lution measure algebras. We shall give here a reasonable and self-contained
proof, using only basic results on duality for locally compact abelian groups
and elementary arguments in Gelfand theory (the Shilov idempotent theo-
rem). Let us state a simpler but equivalent result, which the first author
had to refer to in a recent work in pure ergodic theory [5]:

THEOREM 1. Let u be a finite positive Borel measure on T or R which
is ergodic with respect to some countable subgroup. If u and its convolution
square are not mutually singular, then u is either discrete or absolutely
continuous.
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The definition of D-ergodicity is straightforwardly extended to locally
compact abelian groups G other than T and R. We keep the assumption
of metrizability, although it is not necessary, since it allows us to work
with standard measure spaces and is natural in ergodic theory. The general
statement is somewhat weaker:

THEOREM 2. Let p be a finite positive Borel measure on a metrizable
l.c.a. group G which is ergodic with respect to some countable subgroup. If u
and its convolution square are not mutually singular, there ezists a l.c.a.
group H continuously embedded in G such that u is absolutely continuous
with respect to the Haar measure of H.

1.2. Theorem 1 follows from Theorem 2 since, when G = T or R, such
a subgroup is either discrete or equal to G. This is classical, but we shall
mention the argument (in Section 3).

We refer to [4] and [6] for the basic properties of D-ergodic measures,
such as the fact that any convolution product of D-ergodic measures is still
D-ergodic. Let 7, denote the translation by £ € G. We do not require the
quasi-invariance Tqu ~ p for every d € D (the equivalence means mutual
absolute continuity) since it does not hold for the simplest examples like
infinite convolution products of discrete measures. Choosing any convex
combination with positive coefficients of all the r4u (d € D), we get a
quasi-invariant measure v and so a non-singular dynamical system (G, v, D),
defined up to equivalence, which is ergodic if and only if x4 is D-ergodic.
Besides, two quasi-invariant D-ergodic measures are either equivalent or
mutually singular.

Therefore, in our three statements, we may assume that u is quasi-
invariant under the action of the subgroup D. Then it is immediate that
Theorem 1 follows from the generalized purity law. Conversely, assume
that p is continuous and that p® and 7,u"t* are not mutually singular for
some n,k > 0 and © € G; they are then equivalent and we have y™ ~
Tpzt™¥P* for all m > n and p > 0; letting v = 7-u*, we have vP ~ 2P
for some p. As v? is still ergodic, Theorem 1 implies that »? is absolutely
continuous and so is u*P.

So, we only have to prove Theorem 2.

1.3. Let us recall a few basic facts about (Polish) l.c.a. groups, which
can be found in [4] and [10, Chaps. 1, 2]. The Haar measure of a l.c.a.
group H is denoted by Ay; if Hy is a quotient l.c.a. group of H, a Borel set
in H; has zero Haar measure if and only if its inverse image in H has zero
Haar measure (the image of a finite absolutely continuous measure on H is
absolutely continuous, and any finite absolutely continuous measure on H;
is the image of an absolutely continuous measure on H).

The dual group H of H is the group of all continuous characters of H,
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with the topology of uniform convergence on compact sets; if H is countable
and therefore discrete, H is compact and metrizable. If ¢ : Hy — H,
is a continuous homomorphism of l.c.a. groups, the dual homomorphism
$: Hy, — H, is one-to-one if and only if p(H,) is dense.

The Fourier transform of a finite Borel measure v on H is defined by
(7)) = [vydv for v € H.

We suppose henceforth that u is quasi-invariant and ergodic under the
action of D, and that u * 4 ~ u. By the D-ergodicity, u is concentrated on
a class modulo D and, from the hypothesis u * pu ~ p, this class must be D.
So, we will assume that D is dense. Then the topology on G is Polish. G is
written additively. As D is a dense subgroup, G is continuously embedded
as a dense subgroup in D.

2. Eigenvalues and characters. A non-zero function fin L®(u) is an
eigenfunction for the action of D if for every d € D, there exists a constant
v(d) such that f(z + d) = y(d)f(z) p-a.e. As a function of d, v is a group
character of D; by ergodicity, f has constant modulus and is determined
up to a constant by 7. We shall say that v is the eigenvalue corresponding
to f. The set e(u, D) of all eigenvalues is a subgroup of D (we refer to [7]
for a thorough study of such eigenvalue groups).

Besides, let L(u) denote the space, isomorphic to L(x), of all complex
measures which are absolutely continuous with respect to . From the
hypothesis p * p < p, L(p) is closed under convolutions and thus is a
Banach algebra under the total variation norm. A character of L(u) is a

non-zero multiplicative linear functional on L(y), i.e. a non-zero function f
in L°(p) such that, for all v, v’ € L(p),

[ fdvxv' = [ fz+y)dv(2)dv'(y) = [ f(z)dv(z) [ f(y)dV'(y)

and this is equivalent to the functional equation (generalized character prop-
erty):

(1) fz+y)=f(2)f(y) wxp-ae

We denote by A(u) the set of all characters of L(u). The equation (1)
shows that, as a subset of the unit ball in L>°(p), it is closed under complex
conjugation and pointwise multiplication. Since the action of-D commutes
with convolutions, any character f of L(u) is also an eigenfunction. In
particular |f| is constant and, by (1), |f| = 1 p-a.e. So A(u) is a subgroup
of the group of all unit modulus functions in L%®(u).

The Gelfand topology on A(u) is nothing but the weak* topology and
is locally compact (A(u)U {0} is compact). On the group of unit modulus
functions, the weak* topology inherited from L (u) is also the Polish group
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topology defined by the L2(u) metric since, when |f] = | fo| = 1 p-a.e.,
J 1= fol dp = 2(Ihull ~Re [ o d#)~

Therefore A(p) is a Polish l.c.a. group. Of course, any continuous group
character is a character of L(x) and we have a continuous embedding of the
dual group G in A(u). The following lemma is not really needed for our
proof but will allow us to identify A(u) and e(u, D).

LEMMA 1. For each eigenvalue v € e(u, D), there is one and only one
eigenfunction f., with eigenvalue ¥ which is a character of L(p). This defines
a group isomorphism from e(u, D) onto A(u) and so a Polish l.c.a. group
topology on e(u, D).

As the mapping which assigns to each character the corresponding eigen-
value is clearly a group homomorphism from A(u) to e(u, D), it will be
enough to prove the first assertion. Let f be any eigenfunction, with eigen-
value ¥ € D. As p* p ~ p we have, for each d € D, f(z + d) = v(d)f(z)
p * p-a.e., that is, from the definition of p * u as the image of u X p by the

mapping (z,y) — = + ¥,
f+y+d)=7(d)f(z+y) pxpae

For p-almost all y, z — f(z + y) is an eigenfunction with the same
eigenvalue, and thus there exists a constant g(y) such that f(z + y) =
9(y)f(z) p-a.e.(y). The function g so defined is clearly measurable, so that

9 f(z) = f(z +y) = g(z)f(y) u X p-a.e., whence g(z) = cf(z) p-a.e.,
where ¢ is a non-zero constant. So,

fle+y)=cf(z)f(y) nwXxpae

and f, = cf is a character. Also, c is the only non-zero constant such that cf
satisfies (1).

The topology on e(u, D) will be defined by the mapping v — f, and
the weak* topology of L*°(u) (or equivalently the L?(yu) topology). Given
a continuous group character vy € 6’, we still denote by v its restriction to
D which is an element of e(u, D), namely the eigenvalue corresponding to
the eigenfunction y(z). Then f,(z) = v(z) p-a.e.

3. A special case. We consider here the case when the l.c.a. group
e(p, D) = A(p) is exactly the dual group G of G. Then the Gelfand trans-
form of a measure in L(u) is merely its Fourier transform.

In the following lemma, we could make use of the structure theorem for

l.c.a. groups, but it will be enough to refer to the following simpler and
well-known result ([10], Theorem 2.3.2):
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Any l.c.a. group which contains a dense homomorphic image of Z is
either compact or isomorphic to Z.

Such a group is called monothetic. Observe that, by duality, the property
above is equivalent to the fact that any l.c.a. group continuously embedded
in T is either discrete or equal to T (and the analogue for R is immediate
by taking a quotient in T).

LEMMA 2. Assume moreover e(u, D) = G. Then p is absolutely contin-
uous.

Suppose first that G contains a compact open subgroup K. The Haar
measure Ag of K is absolutely continuous and its Fourier transform is the
characteristic function of the annihilator {y € G; v(z) = 1 for all z € K}
of K. This set is compact and open in G, which is the Gelfand spectrum
of L(p). By the Shilov idempotent theorem [3] there exists an element v of

L(p) with # = Ag. By the unicity of the Fourier transform, Ax = v and
thus Ax < p. Since p is ergodic, it is absolutely continuous with respect to
a combination of translates of A\, i.e. with respect to Ag.

In the general case, we use a modification of the construction given
in [10] (Lemma 2.4.2) in order to get a quotient l.c.a. group which contains
a compact open subgroup. Let V be a symmetric compact neighborhood
of 0in G. As D is dense, we can find finitely many elements z,,...,2, of D
such that V + V is contained in |J(V + z;). Then we choose a subfamily
Ljy..+,Zj so that the subgroup Dy it spans is discrete in the topology
of G, and which is maximal for this property.

Let H=G/D,, and let W and v, ...,y be theimages of Vand zy,...,z,
in H. By the maximality assumption, none of the closed groups K; gener-
ated by the y; may be isomorphic to Z; as those groups are monothetic, they
are compact and so is the sum X = W+ K, +...+ K,,. By the construction
W+ W C K and it follows that i + K C K; moreover, K is symmetric and
so it is a subgroup of H. As K D W and W is a neighborhood of 0 in H,
K is an open subgroup.

Let m be the natural projection of G onto H and let v be the image of u
by 7. Clearly, v * v € v, v is quasi-invariant and ergodic under the action
of D/Dy. f is an eigenvalue for (H,v, D/Dg) (or a character of L(v)) if and
only if the Dy-invariant function f o 7 is an eigenvalue for (G, u, D) (or a
character of L(u)). Thus e(v,D/Do) = {y € G; ¥(d) = 1 for all d € Do} =
H, and both have the topology induced by the topology of G. By the first
part of the proof v € Ap.

Now, for every Ag-null set N in G, Ag(N + Dp) = 0 and it follows that
7(N)is a Ag-null set, so that u(N+ Do) = v(7(N)) = 0 and thus u(N) = 0.
Therefore p € Ag.
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4. Proof of Theorem 2. Let H be the dual group of e(yu, D). We
write H additively, we denote by (z,v) the duality. Since G C e(u, D),
e(u, D) is a dense subgroup of D and we have an isomorphism of D with a
dense subgroup of H; we shall consider D to be still embedded in H. By
duality, there is also a continuous homomorphism ¢ from H into G such
that

(2) (e(2),7) = (z,7) forallz € H and v € G.

We shall construct a Borel cross section p-a.e. for ¢, for which the image
measure of u is absolutely continuous. R
Let E be a countable dense subgroup of e(y, D) such that ENG is dense

in G, and let E be its dual group. For p-almost all z, oy (2) = fy(2) fyr (2)
holds for every v, 7' € E, so that we have a mapping h from G to E with,
p-almost everywhere,

(3) (h(z),7) = f4(z)  for every 7 € E.

This mapping is clearly Borel, from the definition of the topology on E.
Let v be the image of u by h. The Fourier transform of v is given on £
by
o(7)= [ (=), dux)= [ f(=)du(z);
so, ¥ can be extended to a continuous function on e(y, D), and this function

is clearly still positive definite. Note that H is a subgroup of E. By the
Bochner theorem, v is concentrated cn H. R
Thus h(z) € H p-a.e. Moreover, for every v € EN G, (2) and (3) yield

(‘P o h(:t), 7) = (h(z)a‘Y) = f‘v(z) = (:B, 7) p-a.e.,

and, as EN G is dense in G’, this proves ¢ o h(z) = z p-a.e.

So, h is one-to-one from a subset of full y-measure in G to H, and u is
the image of v by ¢. From f,(z+y) = fy(z)fy(y) u X p-a.e. forall y € E,
we get

(4) h(z +y) = h(z) + h(y)  pX p-ae.,

and, for every d € D, as f,(z +d) = v(d)fy(z) = (h(z) + d,7) p-a.e. for all
7€E,

(5) h(z+d)=h(z)+d  p-ae.

By (4), v * v is the image of 4 * p by h and thus v * v € v. By (5), v is
quasi-invariant under D and the system (H,v, D) is isomorphic to (G, i, D);
it is ergodic and e(v, D) = e(u, D) = H. So, (H,v, D) satisfies the hypoth-
esis of Lemma 2, and v is absolutely continuous.

Now, we may consider the quotient l.c.a. group H; = H/kery to be
continuously embedded in G. Then, as p is the image of v by ¢, it is
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absolutely continuous with respect to the Haar measure of H;. This ends
the proof of Theorem 2.

5. Remarks
1. We finally conclude that L(u) is the group algebra L'(H;), whose

Gelfand spectrum is the dual group Hi; it follows that H; ~ H and ¢ is
one-to-one. This implies that G is dense in e(p, D), but we cannot prove
this fact directly.

2. Theorem 1 yields an alternative proof for a result of V. Mandrekar
and M. Nadkarni [9]:

If p is a positive Borel measure on T or R such that T,u ~ p p-a.e.,
then pu is either discrete or absolutely continuous.

Indeed, g * p ~ p follows then from p* p = [ 7-pdp and it is easy to
show that u is ergodic with respect to any countable subgroup of H(u) =
{z; Tzp ~ p} which is dense in the Polish topology defined by the operation
of H(p) on L(p) (see [7]).

Conversely, we cannot deduce Theorem 1 from the result above, since
we would have to prove a priori that the hypothesis p * g ~ p implies
Tzt ~ p p-a.e.; this is a consequence of Theorem 1, but we can construct a
non-ergodic p with pu* g~ pu and 7,u Ly for every z # 0.

3. In [8], we give a further strengthening of the generalized purity law,
corresponding to the stronger version of Theorem 1, for a positive D-ergodic
measure u on T or R:

If i is continuous and singular, then there ezists a Borel set E such
that p is concentrated on E and p x u(E — 2) = 0 for every z.

This could also be proved without reference to J. L. Taylor’s theory (with
noticeable complications).

In the same note, we show that the ergodicity condition may be replaced
by the weaker purity assumption:

for every Borel set E, either u(E) = 0 or u is concentrated on a countable
union of translates of E.

Under this hypothesis we are not able to give a direct proof.

4. The main argument here is that A(u) is a l.c.a. group, which allows
the construction in Section 4. This can be done more generally, for a positive
finite Borel measure u on G with pu * u < p (so that L(p) is a convolution
algebra), when the group of modulus one functions in A(y) is open in A(p).

Then, in the language of J. L. Taylor [11], 1 is critical in A(x) and his
main result is that p is not singular with respect to the Haar measure of some
continuously embedded l.c.a. group. In our proof, we need the additional
assumption of ergodicity since, in Lemma 2, when G does not contain a
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compact open subgroup, p must be quasi-invariant under the action of the
discrete group Dy, in order to obtain a proper quotient algebra of L(u)
whose spectrum is the desired subset of A(u).
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