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1. Introduction. In his paper [6] Lumer, for the first time introduced
the concept of semi-inner product spaces. A complex (real) vector space
X is called a complex (real) semi-inner product space if corresponding to
arbitrary pair of elements x, ¥ ¢X, there is defined a complex (real) number
[x, y] which satisfies the following properties, for z, ¥, ze X, 1 complex
(real):

(1) [®+y, 2] = [, 2]+ [y, 2], [Az, y] = Al=, y],
(ii) [, 2] >0 for xz +# 0 (strict positivity),
(i) @, y1I* < [, 2] [y, ¥].
Henceforth semi-inner product would be abbreviated to s.i.p.
With the setting |jz| = [x, 2]}, every s.i.p. space becomes a normed

linear space, and an s.i. p. space, more generally a normed space, is an
inner product space if and only if the norm satisfies the parallelogram law:

@ +9lI2+ lle—ylI* = 2|ll*+2 iyl

Lumer further studied the relationship between the approximate
point spectrum and the closed numerical range. The numerical range
of a bounded operator 7T, defined on an s.i. p. space X, is the set of all
complex numbers {[Twx, z]: zeX, |o] = 1}.

Berkson [1] studied some properties of the s.i. p. spaces and Bade
functionals. Giles [3] with the idea of obtaining the analogues of the
Riesz representation theorem, orthogonality relation as studied by James
[4], and Géateaux differentiability of the norm, was led to introduce the
concept of continuity of s. i. p. spaces which plays a very important role
in all his theorems and so would do in our theorems. Giles also needed
many other axioms than originally enunciated by Lumer. The techniques
adopted by Giles are standard in the theory of Hilbert space.

Our main interest in this paper is to study the analogues of the Riesz
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representation theorem and the unique decomposition theorem. In obtain-
ing the analogue of the Riesz representation theorem, we replace the
uniform convexity [2] and the homogenity property [z, iy] = A[w, v]
by the inequality |lz+y|*+u?|lw—yl* < 2|z|*+2|ly|* where 0 < u <1
[6]. It is easy to see that every normed space, satisfying the
inequality |z +y||2+ p?lle —¥|2 < 2|22+ 2(|y||?, is uniformly convex. It
may be mentioned here that a normed linear space satisfying this ine-
quality with 4 =1 is an inner product space (Schoenberg [8]). Thus
the inequality just mentioned is stronger than uniform convexity as used
by Giles. But then it would follow that the normed spaces whose norms
satisfy the inequality have richer structure than that of a uniformly
convex normed space.
Throughout yx is taken to be positive and less than one.

2. In this section, we establish the unique decomposition theorem
among other results of the s.i. p. spaces. For some additional results,
we require some additional structure on the s. i. p. space.

Definition 2.1. A normed vector space is strictly convex if whenever
llzll + vl = ||z +v||, where x,y # 0, then ¥y = Az for some real 1> 0.

Berkson characterized strict convexity of the norm in terms of the
8. i. p. properties. We quote his result in the form of the following

LEMMA 2.2. An s. i. p. space is striclly convex if and only if, whenever,
[z, y] = |lz|| |lyll, where z,y + 0, then y = Az for some real A > 0.

Definition 2.3. A sequence z, of elements of the s.i. p. space X is
said to converge weakly in the first argument to an element zeX if [x,, ¥]
— [, y] for every ye X. The weak convergence with respect to the second
argument is defined in an analogous manner.

PROPOSITION 2.4. In an s. i. p. space X, the strong convergence implies
weak convergence in the first argument and the weak limit is unique. In
the case of weak convergence with respect to the second argument, the weak
limit is unique if the 8> 4. p. space is strictly convex.

Proof. The first part of the proposition is easy and hence we omit
it. As regards the second part we proceed as follows. Let y be the weak
limit of a sequence {y,} in-X with respect to the second argument. Let y’
be another weak limit of the sequence {y,}. Then [z, y] = [, y'] for each
weX. Putting » =y in [#,y] = [«,y'], we have [y,y] = [y, y'] or [ly|?
< llyll lly’ll, that is [yl < |ly’|. Putting # =y" in [2,y] = [#,y'], by the
similar arguments as above, we have |jy’|| < ||ly|l. Hence |ly| = |ly’|. Putting
@ =y in [», 9] = [»,¥'] and using |ly|| = |ly’ll, we have [ly|| Iy’ = [, y'].
Hence, by an appeal to Lemma 2.2, we have y = y'.

Definition 2.5. An s.i. p. space is said to be a continuous s.i:p.
space if Re{[y, v +Ay]} — Re[y, x] for all real A — 0.
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We shall now introduce the concept of orthogonality due to Giles [3]
and James [4]. The following definition 1s due to Giles.

Definition 2.6. Let X be an s.i. p. space. We say « is orthogonal
to y (written as « | y) if [y, ] = 0, where z, ye X.

It is to be noted that this relation is not symmetrie, that is if # | v,
then v is not necessarily orthogonal to .
James defined orthogonality in a different way:

Definition 2.7. Let X be a normed linear space. We say « | y if |z +
4 Ay|| = ||#| for any secalar A, where z, y eX.

Under certain conditions, as shown by Giles, Definitions 2.6 and
2.7 coincide. We state the connection in the form of

LeMMA 2.8. In a continuous s.i.p. space X, x | y if and only if ||z +
+ Ayl = ||xl| for any scalar A, where z, y e X.
We prove the following

- THEOREM 2.9. Let X be a complete and continuous s. i. p. space which
satisfies the inequality

(2.9.1) [ 4|2+ g [Jw — v]|* < 2 [+ 2 Jo]1%,

then, for every closed proper subspace N of X, there is a non-zero vector
orthogonal to N and any x <X can be expressed in the form x = y+ 2, where
y belongs to N and z is orthogonal to N. Moreover, this representation is
unique.

Proof. Let N be a closed vector subspace of X, and let zeX ~ N.
Let d = d(w, N) denote the distance between x and N, where d(z, N)
= inf {|ly —||, y e N}. Now there exists a sequence {y,} e N such that im ||y, —
-—x|| = d. Now proceeding, as in [7], p. 71, using inequality (2.9.1) instead
of the usual parallelogram law, we have | —y,| = inf{|jx—yl|, yeN},
where y, is the limit of the sequence {y,}. Putting x—y, = 2, we have
2l < lyo—y +2ll = lly’+2ll, where y’' = y,—yeN. Hence, by Definition
2.7,2 | N,and ¢ = y,+2. The uniqueness of the decomposition is a matter
of routine arguments.

In the next theorem, we obtain a more general result than Theorem 4
of [6], p. 32, provided the s.i.p. space has some additional structure
present in it.

THEOREM 2.10. In a complete, continuous s.1i. p. space X satisfying
the inequality |lo+y||*+ u?llo—yl* < 2 |(|2]*+ 2 ly|%

o(T) = W(T),

where o(T) and W (T) denote, respectively, the spectrum and the closure of
the numerical range of a bounded operator T defined on X.
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Proof. Let 4 be a complex number such that A¢W (T'). Then let us
write

0<d=d(1 W(T)) = inf lu—A or d<|[Tx,x]—A4|
weW (D)
= |[T=, 2] —A[x, ]| = |[Tz— Az, x]|,

where x¢ X and |jx|| = 1. This can be written as

dllz|? < | [T2 — Az, ]| < || To— Az| |2
or
dllz| < (T—aall  or AT —4)"yl< |yl

for all ¥ in the range of (T —A). Thus (T —1)~! is a bounded operator on

the range of T —A. R(T — 1) # X, for otherwise R(T — 1), is dense in X.
Since (T — A1) is invertible on R(T —A), it follows that (T —A)~' exists
on X. Hence A¢p(T) (the resolvent set of 7'). Now if R(T — 1) # X, then,
by decomposition theorem, there exists an z, 0 such that [(T—
— ANz, 2y] = 0 for xeX. In particular, [Tx,, x,] = 1[x,, ,]. By Lemma
2.8, without loss of generality, we can choose ||z, = 1, hence [Tz, z,] = 4,
therefore 1¢ W(T), which is a contradiction.

3. In this section we propose to discuss the analogue of the Riesz
representation theorem for s. i. p. spaces.

Definition 3.1. The norm of a normed space is said to be Gdteaur
differentiable if, for all z, y X and real 4,

T ly + Azl —lyll
m i

A-+0 Y

exists.

The following Lemma due to Giles [4] shows the relationship between
the s.1i. p. space and the Gateaux differentiability of the norm.

LEMMA 3.2. In a continuous 8.t.p. space X, the morm is Gdteaur
differentiable, and

. ly+Azl—lyl  Re{[x, y]}
lim =
A0 A Iyl
THEOREM 3.3. In a continuous s. i. p. space X, which is complete with
respect to its norm and in addition the norm satisfies the inequality
(3.3.1) [l +[|2 + p?lu —vl|2 < 2 ||u||*+2{jv]|?,
every continuous linear functional f, defined on X, can be represented by
f(x) = [&, y], where y is unique.

Proof. We shall divide the proof in two parts: one for the real case
and the other for the complex case.

, wherezx,yeX.
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Real case: Let f be a continuous linear functional defined on X. We
may, without any loss of generality, suppose that |f| = 1. Let us choose
a sequence ¥,, ¢ X such that ||y,|| = 1 and |f(y,)] = [Ifll = 1. We may suppose
(after multiplying by a suitable complex number of modulus 1) that f(y,)
= |f(y,)]. Thus we have f(v,) <1, f(y,) > 1. Let ¢ be chosen so that
0 < ¢ < 1, then, for sufficiently large =n,m,f(y,) > 1—¢ and 2—2¢
<fWn+Ym) < [Yn+ Ynl. By inequality (3.3.1), we have

HeYn— Ymll* < 2[19all®+ 2 1Ymll® — 1Y+ Yull* < 4 — (2 —28)

Hence, {y,} is a Cauchy sequence and converges to y, say. Then
llv.]l = llyl| = 1. It is also clear that y is unique. Now, for 4 > 0, we have
fly+ ) < |ly+ Ax| and f(y) = |yl (since |f|| =1, by supposition). Hence

Fly+iz)—f(y) < ly + Azl — [yl
2 = 2

fla) = — f(y—la;) —f(¥) > _ IIy—M;II—II'yII.

fl@) =

H

Therefore as 4— 0, we have, by Lemma 3.2, f(x) = Re{[x, y]}
= [, y], since the space under consideration is a real space.

Complex case: Following the arguments in Lumer ([6], Theorem 2,
p. 31), let us write f(z) = f,(x) —if,(i2), where f, is the functional defined
over the real s. i. p. space which is complete with respect to its norm and
is also continuous. Obviously, ||f,l| < |Ifl = 1 (suppose). Since f,(y) = |lyll,
we have ||f;| = 1. Now, as in the real case, f,(y +Az) < ||y + Ax|. Hence,
arguing as in the real case, f,(#) = Re{[w, y]1}. Again f,(ix) = Re{[iz, y]}
— —Im(z,y). Hence f(#) = fi(®)—ifi(@) = Re{[s, y1}+4 Im[z, y]
= [, y]. This completes the proof of the theorem.
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