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MAPPING ARCWISE CONNECTED CONTINUA
ONTO CYCLIC CONTINUA
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W. KUPERBERG (HOUSTON)

1. By a compactum we mean* a compact metric space and a connected
compactum will be called a continuum. The term mapping will be used
for a continuous function. We say that a mapping f: X—Y is inessential
if it is homotopic to a constant mapping, otherwise we call it essential.
The unit circle in the plane will be denoted by §'; we shall consider §*
as the set of all complex numbers with the absolute value 1. For a space X
and a point x, fixed in X, the set of all homotopy classes of mappings of
the pair (8', 1) into the pair (X, #,) has the well-known group structure;
the group is denoted by =,(X, z,) or just =,(X) if X is arcwise connected,
and it is called the fundamental group of X. On the other hand, the set
[X, 8'] of all homotopy classes of mappings of X into S has then natural
Abelian group structure, induced by the group structure of S', as it was
noticed by Bruschlinsky [2].

Recall that for any mapping f: X—Y there are homomorphisms
ot w(X) > 7, (Y) and f*: #'(Y) —a'(X) that are said to be induced by f.
These homomorphisms are defined by

f*[a] = [foa] for any mapping a: (8, 1) > (X, @),
and
f*[B] = [Bof] for any mapping B: ¥ — &,
where the square brackets indicate the homotopy class of the mapping.
In both groups =,(X) and »'(X), the neutral element is the homotopy
clags consisting of all inessential mappings.

For any arcwise connected space X, let A (X) denote the subset of
the group ='(X), consisting of the homotopy classes of all mappings
p: X—8' such that B«(n,(X)) ~ 0. One can easily prove the following
propositions:

PROPOSITION 1. For any acrwise connected space X, A (X) is a subgroup
of a*(X).

* This research was supported by University of Houston FRSP Grant
# MTH-K-91.
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PROPOSITION 2. If f is a mapping of an arcwise connected space X into
an arcwise connected space Y, then f*(A(Y)) < A(X).

These propositions tell us that A is a (contravariant) functor from
the category of arcwise connected spaces to the category of Abelian groups.
Indeed, for any arcwise connected space X, A(X) is an Abelian group,
and for any mapping f as in Proposition 2, we can define the homomorphism
f4: A(Y)—> A(X) induced by f just restricting both the domain and the
range of the homomorphism f*: #'(Y) —a'(X). Observe that the functor
A has the homotopy invariance property, since the cohomotopy functor
has this property. This means that if two mappings f, g: X—Y are homo-
topie, then f4 = g

PrOPOSITION 3. If X is a locally connected continuum, then A(X) ~ 0.

Proof. Let p: R'— 8! be the well-known universal covering mapping;
R! denotes the set of real numbers and p (t) = €™ for any te R. If [a] ¢ 4 (X),
i.e.a: X— &' is a mapping such that a(n, (X )) ~ 0, then there is a lifting
of a, that is a mapping a: X— R! such that p oa = « (see [4], Chapter 2),
since each locally connected continuum is locally arcwise connected
(see [3]). But R’ is contractible which makes a inessential. Therefore
a 1is inessential, [a] = 0.

Proposition 3 tells us that the functor A is most useful when applied
to non-locally-connected continua. The main result of this paper is the
following

THEOREM. Let X and Y be arcwise connected continua. If f is a mapping
of X onto Y, then f* is a monomorphism.

Note that Proposition 3 can be obtained as a simple corollary from
this theorem, since each locally connected continuum is a continuous
image of the segment I = [0,1] and A(I) ~ 0

2. We shall prove the theorem formulated in Section 1 using the
following equivalent expression of it:

(*) Let X and Y be arcwise connected continua and let f be a mapping
of X onto Y. If g: Y- 8" is an essential mapping such that g, (nl(Y)) ~ 0,
then gof: X— 8" is essential.

Proof. Since Y is a compactum, we can assume that Y is a subset
of the Hilbert cube Q. Let T denote the product @ x 8 and let @ = T be
the graph of the mapping g,

G ={y,9)e@x8; ye¥, s =g(y)}.

The mapping y: Y—T defined by y(y) = (¥, g(¥)) is a homeomorphic
embedding, y(Y) = @. Further, let p: T— 8" be the projection, p(q, 8) = s
for any (g, s8)eT. Observe that for any mapping z: Z—Y, the compo-

sition g oz is essential if and only if the composition y oz is essential, since
g = poyand p is a homotopy equivalence by contractibility of the Hilbert
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cube Q. In particular, y is essential since so is g, and therefore the inclusion
i: G@—T is an essential mapping. Moreover, i, (m,(G)) =~ 0 since g(,(Y))
~ 0. Now, as assumed in (*), let f be a mapping of an arcwise connected
continuum X onto Y and suppose, on the contrary, that g o fis inessential.
Then f; = y of is also inessential. Consider the covering mapping ¢: f’—>T,
where T is the product R x Q of the real line R and the Hilbert cube @,
and ¢ is the ‘“wrapping function” ¢(t, q) = (€*™, ¢). For any mapping
z: Z—T, a mapping z: Z —T is said to be a lifting of z if @0z = z. Observe
that 2 has a lifting if and only if 2 is inessential. Indeed, if 2z has a lifting,
then it is inessential since T is contractible. On the other hand, if 2z is
inessential, i. e. there is a homotopy #z,: Z—T (0 <t < 1) such that z, = 2
and z, is a constant mapping, then 2, can be trivially lifted and, by the
homotopy lifting property of covering spaces (see [4], Cha.pter 2), the
entire homotopy 2, can be lifted. In particular, there is a lifting 2, of z, = =.
Thus, f; has a lifting f1 X -—>T but the inclusion ¢: G—T has no lifting.
The image f,(X) is contained in the set @ = ¢~!(@) and, since X is arcwise
connected, the image fl(X ) is actually contained in a path-component P
of the set G. Let us notice the following properties of P:

(i) ¢ maps P onto G, since G is acrwise connected and each path
in G can be lifted.

(ii) @ maps P one-to-one into T, otherwise there would be a loop in G
whose lifting would be a non-loop, which would yield 7, (n,(G)) % 0.

(iii) P is mom-compact. Otherwise, by (i) and (ii) the restriction ¢|p
would be a homeomorphism of P onto G and (¢ |p)~"! would define a lifting
of the inclusion 7: G—T, which is impossible.

In particular, it follows from (iii) that fl(X ) is a proper subset of P.
Further, by (ii), f(X) = ¢(fl(X)) is a proper subset of G and, therefore,
J(X) is a proper subset of Y, a contradiction which completes the proof.

3. COROLLARY 1. If a continuum Y is a continuous image of an arcwise
connected continuum X, then the group A (X) contains a subgroup isomorphic
to the group A(Y).

COROLLARY 2. If X and Y are arcwise connected continua, A(X) ~ 0
and A(Y) » 0, then there is no continuous mapping of X onto Y.

A continuum is said to be cyeclic if it can be mapped essentially
onto 8'. Otherwise it is called acyclic.

COoROLLARY 3. If X is an acyclic arcwise connected continuum and Y
18 a cyclic continuum with m,(Y) ~ 0, then there is no mapping of X onto Y.

Example. The planar curve known as the “Warsaw circle” (sketched

on the figure) is not a continuous image of any arcwise connected acyclic
continuum.
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This example gives a negative answer to the following question
concerning dendroids, i. e. arcwise connected and hereditarily unicoherent
continua, asked by Michael A. Laidacker:

Is it true that each arcwise connected continuum is a continuous
image of a dendroid?

Considering this question, A. Lelek conjectured that the “Warsaw
circle” is not a continuous image of any dendroid and even of any arcwise
connected acyclic continuum, which appears to be true.

COROLLARY 4. If a continuum Y s a continuous image of the cone over
a compactum X, then A(Y) ~ 0.

Indeed, the cone CX over a compactum X is arcwise connected and
A(CX) ~ 0 since OX is contractible. By Corollary 2 we get A(Y) ~ 0.

Let us remark that Corollary 4 is a generalization of Proposition 3,
since the segment I = [0, 1] is the cone over a single point.

COROLLARY 5. If Y s an arcwise connected continuum with A(Y) = 0,
then for any compactum X, each mapping of X onto Y i8 essential.

Proof. Consider X as the base of the cone CX. If a mapping f of X
onto Y were inessential, then there would exist an extension f: CX—»Y
of f. The mapping f would be onto, which would contradict Corollary 4.

ProBLEM. Does there exist an arcwise connected continuum X such
that, for any arcwise connected continuum Y, 4 (X) contains an isomorphic
copy of A(Y)? (P 905)

REFERENCES

[1] K. Borsuk, Sur les groupes des classes de transformations continues, Comptes
Rendus de I’Académie des Sciences, Paris, 202 (1936), p. 1400-1404.

[2] N.Bruschlinsky, Stetige Abbildungen und Beltische Gruppen der Dimensionszahlen
1 und 3, Mathematische Annalen 109 (1934), p. 525-537.

[8] C. Kuratowski, Topologie II, Warszawa 1948.

[4] E. H. Spanier, Algebraic topology, McGraw-Hill 1966.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HOUSTON, HOUSTON, TEXAS

Regu par la Rédaction le 1. 10. 1973



COLLOQUIUM MATHEMATICUM

VOL. XXXI 1974 FASC. 2

ON 1-DIMENSIONAL CONTINUA
WITHOUT THE FIXED-POINT PROPERTY

BY

JOHN R. MARTIN (SASKATOON, SASKATCHEWAN)

The following two problems were communicated to the author by
Professor Lloyd Tucker.

PrOBLEM 1. Does there exist a 1-dimensional continuum X without
the fixed-point property such that every retract of X has the fixed-point
property with respect to one-to-one maps¢?

PrOBLEM 2. In problem 1 replace “one-to-one” by “onto”.

The purpose of this note* is to provide examples which answer the
two above questions in the affirmative, and to pose new questions by
placing additional restrictions on the continua in problems 1 and 2.

Example 1. Our first example is essentially the same as an example
given by Young [5], p. 884. Let C, be a continuum in the right half 2y-plane
joining the point (0, 3) to the interval I, = [—3, —1] of the y-axis,
C, being homeomorphic to the closure of the graph of y = sin(1/z),
0 < o< =, with I, corresponding to the limiting interval of the graph.
Let O,(I,) be the image of C,(I,) under the rotation of the xy-plane about
the origin 0 through an angle of n. Let T =T, uT, uT, be a triod con-
sisting of the subintervals T',, T, on the y-axis joining the origin 0 to (0,—1),
respectively (0, 1), and an arc T, which joins 0 to p = (0, 4) and whose
interior lies below the xy-plane. Let A be a set lying in the ay-plane ho-
meomorphic to a half-open interval such that 4

(1) has only its endpoint p in common with C, uCy uT and

(2) “converges” to C, U0, in such a way that

(a) there is a sequence of arcs S,, 8,, 8j, ... filling up 4 such that
8;n8; =@ for j #1—1,4i+1, and §;NS; is an end point of §;and §;
for j =¢—1,¢+1, and

(b) C, =1im8,;_,, C; =1lim&,;.

* The research for this article was supported in part by the National Research
Council of Canada (Grant A 8205).
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Define X, = C, uC,uT uA. Then X, is a 1-dimensional (indeed,
rational) continuum. We define a fixed-point free map f: X,—X, which
is a composition of two discontinuous functions f, and f,. Let f,: X,—X,
be such that on C, uC, uT, UT, it is a rotation in the zy-plane about 0
through an angle of =, and is the identity otherwise. Let f,: X,—~>X, be
a function that is a homeomorphism on A such that for each i, 8; is mapped
on 8;,,, that is the identity on O, u(,, that maps T;, j =1, 2, homeo-
morphically onto T,;uT;, and maps Ty homeomorphically onto §,. Then
f =f.f1 is continuous and fixed point free.

Now any one-to-one map h: X,—X,; must preserve triods. Since 0
is the only “triple point” in X,, we must have k(0) = 0 and therefore X,
has the fixed-point property with respect to one-to-one maps. To complete
the example we show that every proper retract of X, has the fixed-point
property. Since X, is an arcwise connected continuum, every retract of
X, is an arcwise connected continuum. Moreover, no retract of X, in C; u
uC, uT can contain a neighborhood N of I, (or I,). For otherwise, a subin-
terval of A would necessarily be retracted onto the non-locally connected
space N which is impossible. Consequently, the only proper retracts of
X, are singleton points, arcs, or triods, all of which are absolute retracts
for compact metric spaces and hence have the fixed-peint property [3].

Example 2. Our second example X, is the subspace obtained from
X, by removing the interior of the triod T from X,,i.e., X; = C; uC U A.
Then the restriction f| X, of f to X, is a fixed-point free map from X,
into X,.

First we show that X, has the fixed-point property with respect to
onto maps. Let g: X,—>X, be an onto map. Since path components must
be preserved under g, it follows that g(4) = A. For otherwise, g(4) = C, U
v, and hence g(X,) = C, uC,. Let h be a homeomorphism from the half-
open interval [0, 1) onto 4, and define a map H from A into the real
numbers R by

H(x) = b~ (g(x))—h~'(x) for each x in 4.

Let ¢ be a point in A such that h(¢) = p, where p is the initial end-
point of A, and let D denote the subinterval of A with endpoints p and q.
Since H(q) < 0 and H (p) > 0, there is a point d in D such that H(d) = 0.
Then h~'(g(d)) = h~'(d) and hence g(d) = d. Therefore X, and every
subspace homeomorphic to it has the fixed-point property with respect
to onto maps.

Using an argument similar to that used in Example 1, we can easily
show that all the retracts of X, which are not homeomorphic to X, are
either singleton points or arcs and thus have the fixed-point property.

ProrLEM 1'. Is there an example for Problem 1 which is (a) planar?
(b) planar and arcwise connected? (P 906)
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ProBLEM 2. Is there an example for Problem 2 which is (a) arcwise
connected? (b) planar and arcwise connected? (P 907)

Remarks. 1. Of course, no example can contain a simple closed
curve as a retract. In particular, no 1-dimensional example X can be
locally connected. For since X does not have the fixed-point property,
it cannot be a dendrite [2]. Hence it contains a simple closed curve (.
Since X is 1-dimensional and locally connected, it follows that X is not
unicoherent about C and, therefore, C is a retract of X ([4], p. 216).

2. Even if we drop the condition of 1-dimensionality, no planar exam-
ple X can be locally connected. For X must separate the plane R?, since
every locally connected non-separating plane continuum has the fixed-
-point property [1]. Let p be a point in one of the bounded complementary
domains of X. Then X must contain a simple closed curve, say J, such
that J separates R?, and p lies in Int J ([4 ], p. 107). Since all simple closed
curves in R? are plane equivalent and the unit circle 8! is a retract of
R*\ {0}, it follows that J is a retract of R*\{p} and hence is a retract of X.
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