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1. Notation and terminology. All Banach spaces and Banach lattices
considered in this paper are assumed to be real.

For Banach spaces E, F and Banach lattices X, ¥ we denote by:

Z(E, F) the Banach space of all (bounded linear) operators with
the usual norm

I e@,m = 1T = sap{IT (@)l: =l < 1};

¥ (E, F) the closure in Z(E, F) of all operators of finite rank;
¥"(X, Y) the Banach lattice of all regular operators with the norm

1Tl g, 7y = 1T0 = [[1 71|z, )

where |7T'| is the modulus of T' (Y is assumed here to be order complete);
¥ (E, Y) the Banach space of all bo-bounded operators () with
the norm

1Tl gogg, 5, = 1 Tlbo = inf{lyl: I7(#)] <y whenever |io]| < 1}

(following [8] or [12], this space would be denoted by [[(E, ¥) or
2y(E, Y), respectively);

#' (X, F) the Banach space of all cone absolutely summing operators
with the norm

I S = IT|, = sup {2 \T (;)]I: ”2 A H }

B

The reader is referred to [13], Chapter IV, for details about the spaces
#"(X, Y)and £ (X, F). Recall that the space £ (X, F) was introduced
by V. L. Levin who proved among other things that for each operator

" (1) We recall that these operators map the unit ball of E into an order bounded
subset of Y.
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T e ¥*™(E, Y) we have the adjoint operator T* € £ (Y, E) and || T|ly,
= ||T*, ([8], Lemmas 4 and 5 cf. also [13], Theorem I1V.3.8).

We agree to identify a Banach lattice X with its canonical image
in the second dual space X**.

2. Formulation of the results and a lemma on Rademacher systems.

THEOREM A ([6], Theorem 1). Let X and Y be Banach lattices and
suppose (X, Y) c (X, Y**). If, for some p €[1, o0), Y (respectively,
X*) contains a vector sublattice order isomorphio to 17, then X* (respectively,
Y) is order tsomorphic to an A M-space.

THEOREM B ([12], corollaire 2.3). Let E be a Banach space and let
Y be a Banach lattice with order continuous norm. If £(E, ¥) = £ (E, Y),
then either E or Y i8 finite dimensional.

The proof of Theorem A given in [5] is based on a combinatorial
result from [3] (about the existence of some special matrices) which
is, in our opinion, off the point. The proof of Theorem B given in [12]
is rather intricate.

The goal of this paper is to give unified proofs of these theorems by
means of Rademacher systems in finite-dimensional Banach spaces. Tzaf-
riri [14] seems to be the first who used this method for a similar purpose
(cf. also Pelczyriski and Singer [11]). Later Rademacher systems were
applied by 9rno [10]. Our considerations are variations of those from [10].

Let a natural number » and a real number p € [1, o) be fixed. The
(normalized) Rademacher system 7, ..., 7, in 17, is defined as follows:

an—1 oft on on 2"
= (Za B AN el rm (G| Sel

i=2m—14)
where e,, ..., ¢,, i8 the standard basis of 0.
Our proofs of Theorems A and B are based on the following lemma
which is implicit in [10].
LEMMA. Let X be a Banach lattice and let f,, ..., f, € X’} be pairwise
disjoint and |fll < 1. Define an operator T: X — 17, by

T(x) = Zn:f,-(w)r‘ for xe X,

i=1

Then

@) izl = | 35

() ITI < 4, ‘Zn,‘f‘ [
=1

H
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where A, is a constant which is independent of n. In particular, if |||T|||

< K| Tl then
|3

Proof. From the disjointness of f,, ..., f, we infer that

< K*A43.

IT(@) = D ful@)Ird,

iml
and so (1) follows.
By the well-known XKhintchine inequality, we have

| Srconl < 1 S

Hence

ITI< 4, sup( 3 () “ < 4, sup If, (@)/"*sup | Y fu) [
=1,,..57 iml

llzll<l 527 i

n

1/2

<4, Z5[".
i=1

3. Proof of Theorem A. The unit ball of the space # (X, Y) equipped
with the norm |-|, is closed in the uniform topology, and so #(X, Y)
is a Banach space under this norm (cf. [5] or [10]). Hence there exists
a constant K > 0 such that for each R e # (X, Y)

(3) | IRI|| < EIIR.

(a) Let Y, be a vector sublattice of Y which is order isomorphic to
1?. For simplicity we identify Y, with I?. The Lemma and (3) show that
for all pairwise disjoint elements f,,...,f, € X} with ||fl <1 we have
the inequality

) I ‘Z”,’f,-

where the constant C is independent of # and f;. But, as was shown in [1],
Theorem 5 (see also [6], Lemma 3), (4) is equivalent to the assertion that
X" is order isomorphic to an AM-space. -

(b) Suppose I? = X* and fix pairwise disjoint elements y,, ..., ¥, € ¥
with Jly;| < 1. Let 7y, ..., 7, be the Rademacher system in I, = X* and
define T e #(X, Y) by

<0,

T(z) = Z"i(“f')'!li (x € X).

t=1
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Then

(5) T*(9)= D <¥:y g>1: (g€ X).

=1

The inequality |T*| < |T|* and (3) now yield
L]l < ¥ = 171 < ENTI = ENT*).

Hence, in view of the Lemma, (4) holds with C = K* A} and f; replaced
by y;, which completes the proof.

Remarks. (i) The proof given above shows that instead of the as-
sumption ? = X* (respectively, I = ¥) we might only suppose that I? is
finitely lattice representable in X* (respectively, Y), i.e. for each n there
exist an n-dimensional vector sublattice Z, in X* (respectively, Y) and an
order isomorphism T, of Z, onto I¥ such that

sup |7, 1 Tl < oo.

(ii) It is worth-while to note that the single condition # (X, Y)
c (X, Y") (or even #(X,Y) = ¥ (X, Y)) is not sufficient to draw
the conclusion that X* or Y is order isomorphic to an AM-space. The
corresponding example was constructed in [2].

4. Proof of Theorem B. The scheme of Robert’s demonstration [12]
of the theorem is the following.

Suppose E is infinite dimensional. Then

(a) XY s order isomorphic to co(I') for some set I

(b) The condition L (E,Y) = ¥*(B,Y) then implies that Y is
finite dimensional.

It is the proof of (a) presented in [12] that is rather intricate, and we
propose to give here a simpler one.

Note first that the assumption £ (E, ¥) = #"°(E, Y) implies the ex-
istence of a constant K > 0 such that | B|,, < K ||R| for each R e Z(E, Y).
Hence, in view of Levin’s theorem mentioned at the end of Section 1,

(6) IR*, < K||R¥|.

As the norm of Y is order continuous by assumption, to prove (a)
it is enough to show that Y is order isomorphic to an AM-space. The latter
will be established as long as we verify condition (4) for Y. To this end
fix pairwise disjoint elements y,,...,¥,€ Y, with |ly;| <1. According
to the well-known Dvoretzky theorem, there exists a 2"-dimensional
subspace E, c E* which is close to 1, (for example, the Banach-Mazur
distance between E, and l;n is less than or equal to 2). For simplicity we
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identify B, with I,. Let ry, ..., r, be the Rademacher system in I7,, and
put, as in the proof of Theorem A,

T(2) = ) 'ri(a)y; (2ek).

i=1
Then T* e £(Y*,1,) and

* _ *
<) — 1l

Ty ”.z’(yo,zgn

I.?'(Y‘,lgn) l( Y',E') .
Hence, in view of (6),
x *
N1 gy < BNy

and so. an application of the Lemma completes the proof of (a).

For the sake of completeness we reproduce here Robert’s proof
of (b). By the theorem of Josefson [7] and Nissenzweig [9], there existst
a sequence {f,} = E* such that ||f,|| =1 and f,(x) — 0 for each = € E.
Suppose I' is infinite and take a sequence {y,} of its different elements.
Put

T(@) = D fu@)e, (s€B),
n=1

where ¢,(y) =1 if y =y, and e,(y) = 0 otherwise. It is evident that
T e Z(E, ¢o(I")) but {T(x): |lr|| < 1} is not order bounded in ¢,(I"), a con-
tradiction.

Remarks. (i) Still another proof of Theorem B has been given by
Buhvalov [4].

(ii) In paper [6] by the second-named author there are some more
results proved by using Rademacher systems. We mention here the following

THEOREM C. Let X be a Banach lattice. The following two conditions
are equivalent:

(a) X 48 order isomorphic to an AL-3pace;

(b) F(X,F)c £ (X, F) holds for some (every) infinite-dimensional
Banach space F'.

We wish to express gratitude to Dr. Z. Lipecki for his help in the pre-
paration of this paper.
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