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0. Introduction. If @ is a finite group, let @ denote the set of all

irreducible complex characters of G. If K < @, x € G and ¥ e K then the
spherical function Y,y is defined by

Y, »(@) = |K|™" Y {x(29) P(y™") : y € K}

for all # e @. The nonzero spherical functions on G may be viewed as
characters of the centralizer algebra (C@)%, which consists of all elements
in the complex group algebra C@ that are constant on the orbits in G under
conjugation by K. If

1K = 2{":?'1” ‘PeKA},A

then o,y = (x| K, ¥)g = Y,p(1) (these are the restriction multiplicities).
If ¢, i8 0 or 1 for every y € & and P e K, then K is said to be a multi-
plwzty free subgroup of Q.

Spherical functions on finite groups were first studied explicitly by
Travis in [6], although certain spherical functions appeared implicitly
in [2]. It seems that the only spherical functions (other than characters)
on finite groups that have been explicitly calculated are those of the
symmetric groups relative to the stabilizer of a point (see [1]). In the
interest of making more examples available we compute herein the spherical
functions relative to H and N for certain classes of split extensions G = NH
with N4 @G.

Suppose @ is a split extension of H by N, ie. NaG,H<@G,G@ = NH,
aRd Nn H = 1. Then H acts as a permutation group on N with

h:m — h~lnh = nh.

It will be convenient at times to write *s for 2~ = hnh~?, and n~>
for (n~')®. The subgroup H also acts as a permutation group on N with

Pn) = p(hmh?) = g(*n).
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We shall write H, for the stabilizer in H of ¢ for each ¢ € I.

A Frobenius group is a permutation group @ acting transitively on
a set A in such a way that the stabilizer of a point is nontrivial but only
the identity fixes 2 or more points. Abstractly, @ is a split extension NH,
where H is the stabilizer of a point, Na@, and N\ {1} is the set of elements
having no fixed points (N is the Frobenius kernel and H is a Frobemius

complement).
The characters of a Frobenius group @G are of two types (see [3],

pP.94)Ify e G theneltherx = ¢? for some ¢ eN @ # 1ly,o0relse y|[N=1,
and y|H € H. Ifcp,GeN thenq) = 69 if and only if ¢ and 0 are in the
same H-orbit in N. If 1y # g€ N then H, = 1 ([3], p. 94).

I am indebted to the referee of an earlier version for pomtfng out an
egregious error and for Theorem 6.1.

1. Spherical functions relative to N, G Frobenius. We assume through-
out this section and the next that @ = NH is a Frobenius group.

THEOREM 1.1. Suppose 5 = ¢° € &, with g € jr, and 0 e .
(i) If 6 ¢ Orbge, then Y,, = 0.
(ii) If 6 € Orbgy, then X ,|(G\N) =0 and Y,|N = (1/6(1))-6.
Proof. It is easily verified that
¢°I(G\N) =0 and ¢°|N = D{p":0cH}.

If neN and h € H, then
Y,5(nh) = |N|"Z{x(fnhu)0(u“): % € N}
= |N|“2{x(n-"u-h)0(u“): ueN} =0
if h #1. For h =1 we have
Yoo(m) = INI™* Yo (mu)0(u™"): € N}
= |N|“2{2{¢‘('nu)0(u“)- ueN}: eH]

But Z{qa’(nu)O(u“) % € N} = ¢+ 0(n) is the (convolution) product
of ¢° and 0 in the group algebra CN, and if ¥ ¢ N, then (P@Q)/|N|)-P
is a minimal central idempotent in CN. Thus ¢*+60 = 0 if ¢° # 0 and
¢*+0 = (|N|/6(1))-6 if ¢* = 6. In particular, if 6 ¢ Orbge, then Y, = 0.
If 6 =¢° se€H, then ¢* = 60 = ¢° if and only if » = s. Consequently,

Y, (n) = [N|"'¢*«6(n) = (1/6(1))-6(n).
THEOREM 1.2. Suppose x € G, with x| H eﬁ, and 0 ¢ N.

(i) If 0 1y, then ¥, = 0.
(ii) If 0 = 1y, then Y, = g.
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Proof. If ne N and h € H, then
Y o(nh) = IN|™' D {x(nhu) 0(u™"): ueN}
= N7 Y {x(n-"u-B)0(u™): w € N}
= 2B N7 D{0(w™"): u e N}
0 if 01y,
= 2(h)(Ly, O)y = {x(h) = g(nh) if 0 = 12-

THEOREM 1.3. N 8 multiplicity free in G if and only if H ts abelian.

Proof. If y = ¢ and 6 € Orbge, then 0, = Y,4(1) =1 by Theo-
rem1.1.X y|H e H and 0 = 1y,then 6, = Y,4(1) = z(1) = 1 for all such
z if and only if H is abelian. In all other cases o,y = 0.

2. Spherical functions relative to H, G Frobenius.
THEOREM 2.1. Suppose y € & and ¥ e H.
(i) If x = ¢° withpe N, n € N, and h € H, then
Y, w(nh) = |H|™¢%(n) P(h).
(ii) If x|H = ¥, then Y,p = (1/2(1)) 2
(i) If ¥ +# x|H e H, then Y,y = 0.

Proof. (i) If # € H, then ¢%(nhx) # 0 if and only if ko = Loro = h~%.
Thus

Y,e(nh) = |H|' Y} {¢°(nho) ¥(27): o e H) = |H|™¢%(n) P(h).
(ii) and (iii). The proof is similar to that of Theorem 1.1:
Yew(nh) = |H|™ D {z(nhe) ¥(@™): 0 € H)
= [H[™ D {x(ha) ¥(27"): o e H}
z(nh)[x(1) if x|H =¥,
0 if ¥+ y|HeH.

THEOREM 2.2. H is multiplioity free in G if and only if both N and
H are abelian.
ProoAf. If y|H ef!, then ¢,y = Y, y(1) is 0 or 1 in all cases. If y = ¢¢
with ¢ € N, then
0w = Y,p(1) = [H|'¢%(1)x(1) = |H|'[@: N]p(1)2(1) = ¢(1)x(1),
which is 1 in all cases if and only if both N and H are abelian.

3. The characters of G, N abelian. In this section we present Mackey’s
construction, as in [4], for the characters of a finite split extension @ = NH
with N abelian. This will establish notation for Sections 4 and 5.

= 1 ) = |
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Suppose ¢ € N and T is an irreducible representation of H, with
character 7. Define T, on NH, by setting T, (nh) = ¢(n)T' (k) for n € N,
h € H. It is a routine matter to verify the following proposition:

PrOPOSITION 3.1. The function T, is an irreducible representation of
NH, with character n, given by n,(nh) = @(n)y(h).

In general, if K < G and 7 € K, we write # for the function on @ given
by #|K = n and 9|(G\K) = 0.

PROPOSITION 3.2. Suppose ¢, 0 € N, ne H,, and ¥ € H,. Then

(i) %% is irreduoible,

(ii) if 6 ¢ Orbge, then 15 # P§,
(iil) if 6 = @ but n # ¥, then n§ # P.
Proof. If u,ve N and @,y € H, then

"(uz) = (vy)uw(vy)” = v-ru- "o

-l.vw’

and so _
73 (uw) = |NH¢|‘12{1’7,("”(W)): veN,yeH)

= INH,|* ) {g(0)¢¥(w)¢"*(v™")#"(@): ve N,y e H}
= |H,I™" ) {¢*(w) i (%) (9, ¢")x: y € H}.
By the Frobenius reciprocity theorem we obtain
(7737 ¥5)
= (ﬂglNHw 5[’o)zvm,
= |NH,I™* D' {13 (ua) ¥y (ua): u e N,w e Hy}
= |NH,| " |H,|™* )] {g" ()i (@) (9, ¢"*)x0(v) ¥(@): ue N, v € Hy, y € H}
= |Hy| " 1H, ™ D) {9, 9w (9", O (2) P (@): @ € Hyy y € H)
=0 if 0 ¢Orbye,
proving (ii). _
Now take 6 = ¢. Then
(13, ¥9) = IH,1™* D) {(¢y 9" )n(9"s o) ¥ (0) ¥ (@): w € H,,y e H}.
But (¢¥, ¢)y = 0 unless y € H,, and if y € H,, then
(@9 ) = (¢*,¢*°) = (9, ¢") = (p,9) =1 for weH,.
Thus
(13, ¥§) = |H,[™* Y {1 (@) ¥(2): @,y € Hy}
= B, Y {n(@)P(@): @ € Hy} = (1, P)a, = d,v,

proving (i) and .(iii).
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Let @, @q, ..., @3 be representatives of the H-orbits in V. For each
¢ let 8(i) = GXH,) be the class number of H,, let 7y, 7, ..., %
be all the irreducible characters of H, , and define y, € (NH, ;) " Dby setting
X5 (uw) = @(u)ny(x) for uelN, veH,, 1<j<s(i). Thus all x§ are
irreducible and they are distinct by Proposition 3.2.

THEOREM 3.1. @ = {%: 1<j< (i), 1<i< M}

~==-= Proof. Note that [¢ : NH,] = [H : H,], and hence

xg(l) = [H . H‘,‘,]g’ij(l).
Thus

DA = Y {H:H,TF D Py}

t,4 i ]
=) [H:H, H,| = Z [H:H,) H|
= |H| ) |0rbge,| = |H|"|N| = |6].

4. Spherical functions relative to N, N abelian.

THEOREM 4.1. Suppose y = 75 € G and 0 € N.
(i) If 6 ¢ Orbge, then Y,, = 0.
(ii) If 6 = ¢*,8 € H, then

Yzo"NHO = (,’70)0 and YzOI(G\NHO) = 0.

Proof. If n,ve N and h € H, then nhv = n-*p-h, and, as we saw
in Section 3,

2(nho) = |H, ™" D {g" (m)g"™ (0)7* (k) (9, 9™)x: 9 € H}.
Consequently,
Y,o(nh) = |N|7* D' {1(nho) 6(v™"): v e N}
= |NH,7' D) {¢"()¢**(0) 7" (h) (¢, 9™ 0(v™"): ve N, y € H}
= [H,[™' Y " (%) (9, 9™ (#*, 0)7" (h): y € H}
=0 if 60¢O0rbgep.
Suppose that 6 = ¢*, s € H. Then

Yo(nh) = |H,™' ) {g¥(n)(g, ¢ ") (9", ¢°) 7" (h): y € H},

and
(@, ¢°) = (9™ ',9) =0 unless y € H,-sh™".

Iy eH,,-sk“, write y = h,sh™?, hl € H,, and note that then
- -1 - -
(@ @™ 7) = (@ @1 7) = (%, 9") = (@, ) = (g, 8™ 7).
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Thus .

Y,o(nh) = [H,|™* D) (¢ (n) (9, 9™ 7" (h): y € H,-8h7"}
=0 unless heH, or heH; = H , = H,.

If h € Hy, then H,-8h™' = H,-s, and so in that case
Y,o(nh) = [H,I™' D' {¢* () 7" (h): y € Hys}
= [H, ™' ) {¢"(n)i* (h): y € H,8}.
But if y = hys, by € H,, then 7 = #'* = 7*, and so
_ {o it h¢H, = H,,
0(n)n°(h) = (n°)e(nh) if h e H,.
THEOREM 4.2. N 18 multiplicity free in G if and only if H is abelian.

Proof. Taking ¢ =1y we have H, = H and y = 7, €@ for each
n € H. Then ¢,, = Y,,(1) = n(1), so H must be abelian in order that
N be multiplicity free. The converse is clear.

5. Spherical functions relative to H, N abelian. We continue to assume
that @ is a split extension NH with N abelian.

THEOREM 5.1. Suppossp e N,neH,,y =75 €@ and Ve H. IfneN
and h € H, then

() Y,e(nh) = |H|™' ) {¢"(n) Yy, (she™"): 2 € H}.
Proof. As,injthe arguments above we have
Y e(nh) = [HITH,I™ D " (n) (9, #™ )wi*(hy) P(y™"): v, 2 € H},
and (¢, ™) = 1 if and onlyjif hy € H ,. Thus
Y, p(nh) = |HI7 D o* () 1H,I* 3 (i (hy) P(y™"): by e H }: 2 e HY.

Fix 2 e H and change variables: v™' = hye H - Then the inner
summation becomes

=™ ) {P(oh)if(v™"): ve H },

Y ,o(nh) = ¢°(n) 7" (h)

which is equal to
Hy|™! ) {P(ho)n*(07): ve H } = ¥ (h),
since ¥ is a class function on H. An easy calculation shows that Y,ﬂ,(h)
= Yy,(2hz""), and so (s) holds.
THEOREM 6.2. H is multiplicity free in @ if and only if H, is multi-
plicity free in H for every p € N.
Pl‘OOf. ozy = Yzy(l) = YV,;(I) = 0,,,-
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6. Dimensions of centralizer 'a.lgebras. If @G is any finite group and
K < @, then the dimension (over C) of the centralizer algebra (C@)X is the
number of K-orbits when K acts on G by conjugation.

THEOREM 6.1. Suppose N4 G and denote by M the number of G conjugaoy
classes in N. Then dim(CQ)N = M-[G: N].

Proof. By Burnside’s orbit formula ([3], p. 68) we have
dim(CAHY = N7 D' {|Ca(n)l: n e N} = |N|7* D'{|Cx(@)|: 2 €@}
= [6¢: NG ) {|On(a)|: 2@} = [¢: N]-M,

gince M is the number of G-orbits in N.

THEOREM 6.2. If G is Frobenius with kernel N and complement H,
then

dim(CG)E = |N|+ |H|—

. Proof. Let ¢, =1, @3, ..., @y be representatives of the H-orbits in
N and let gz be the regular character of H. By the Frobenius orbit formula
and the second orthogonality relation for characters we have

dim (CA)* = |H|™ Y {ICq(h)|: h e H)

= M {(f|H,¢f|H): 2<i< M}+ Y {(z|H, z|H): z €@, z|Heh)
= D {@(1)(em en): 2 <i< M}+|H|

= |H| Y {p(1)*: 2<i< M}+|H|

= Y ip(1): pe W, p # 1y} +A| = (N|—1+ 8],

since |Orbge;| = |H| if ¢; # 1n.
THEOREM 6.3. Suppose that G is a finite split extension NH, with N and
H both abelian, and that M is the number of H-orbits in N. Then

dim (C@)Z = M-\H|.
Proof. If y = #¢ e @, then y|H = [H: H,]%, 80
(X|H, 2| H)g = [H: H,FH™ Y {n(h)n(»™"): heH} = [H:H,.
Oonsequentiy,

dim(CH)? = D'([H:H,): neH,, 1<i< M}
= D'((H:H,) |H,|: 1<i< M} = M-|H|.
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