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Let 7 denote the set of real-valued functions defined on [0, 1] of
the form Uo F (z), where F (x) is a differentiable function and U is a homeo-
morphism. Equivalently, 7 consists of those continuous functions on [0, 1]
which can be homeomorphically transformed into differentiable functions.
Our principle result is that the condition (S’) defined in the sequel char-
acterizes the class 7.

Since F(x) is continuous, we assume that it maps [0, 1] into itself
and that U is a homeomorphism of [0, 1] onto itself.

Definitions. 1. A continuous function F is said to be ACG* on an
interval I provided that

I=\JE,,

where each E, is closed and, for any collection of intervals I, = [a;, b;]
.with end points in ¥, , for each ¢ > 0 there is & § = d(¢, n) > 0 such that

D) (by—a,) < 8 implies D' |F(I})| < s
k k

(|E| denotes the Lebesgue measure of F).
2. A continuous function F is said to be ACG on I if

I=UE1H
n

where each E, is closed and, for any collection of intervals I e = [, b
with end points in E,, for each ¢ > 0 there is a.§ = (s, n) > 0 such that

D) (b—a) < 8 implies D) |F(b,) — F(ay) < e.
k k

3. A function F satisfies Lusin’s condition (N) if |H| = 0 implies
|F(E)| = 0.
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4. A function F satisfies Banach’s condition (T,) if
{y | F~(y) is infinite}| = 0.
5. A function F satisfies Banach’s condition (T,) if
{y|F~!(y) is uncountable}| = 0.

6. A function F satisfies Banach’s condition (S) if for each £¢> 0
there is a 6 > 0 such that |E| < J implies |F(F)| < e.

7. A function F satisfies condition (S8') if for each open interval J
contained in the range of F there exists ¢; > 0 such that J < F(E) implies
|B| > &;. (Only measurable sets £ need be considered since a non-meas-
urable set is always contained in a measurable set havmg the same outer
measure.)

8. A function F satisfies condition (S'’) if, for each open interval J
contained in its range, J < F(E) implies |E| > 0.

The following statements hold for continuous functlons

(i) (8) = (8) = (8").
(ii) (N) = (8").

(iii) ACG = (N).

(iv) (T,) and (N) < (S).

(v) ACG* implies each of the properties in' Definitions 2-8.

(vi) Differentiable functions satisfy ACG®.

(vii) (N) = (T,).

Statements (i) and (ii) follow easily from the definitions. Proofs for
(iii)-(vii) can be found in [2], p. 277-289.

Before showing that 9 consists of the continuous functions which
satisfy (S'), we note that (vi), (v), and (ii) imply that if F takes a set of
measure zero onto a non-degenerate interval J, then F ¢ 7 ; for if G is
any homeomorphism, then [G(J)|> 0 and GoF does not satisfy (N).
Thus members of  must satisfy (S’’), and Lebesgue’s singular function
(see [1], p. 113) provides an example of a continuous function which does
not belong to 7, since it maps the Cantor set onto [0,1]. Since every
strictly increasing function belongs trivially to 7, the strictly increasing
singular function given in [1], p. 278, shows that members of J need
not satisfy (S).

THEOREM. F belongs to T if and only if F is continuous and satisfies
condition (S').

Proof. By (vi) and (v), every differentiable function satisfies condi-
tions (T,) and (N). Thus the necessity of (S') can be established by assum-
ing that F does not satisfy (S') and by showing that if ¢ is any homeomor-
phism, then GoF cannot satisfy both (T,) and (N).
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If F does not satisfy (S’), then there are a non-degenerate interval
J < rngF and a sequence of sets {E,} such that |E,| < 2 " and J < F(E,)
for all n. Let G be any homeomorphism. Then G(J)'is a non-degenerate
interval and G(J) < GoF(E,) for all n.

Let
E =1lmE, = {z|® € B, for infinitely many k} = () U E.
n n k>n
Since
DB, < oo,
n
we have |E| = 0. If y e G(J) is assumed by GoF at only finitely many
points x,, @,, ..., z,, then one of these values must belong to infinitely

many of the E,. Hence y € Go F'(E). Then, if Go F satisfies (T,),
|Go F(E)nG(J)| = |G(J)| > 0.

Since |E| = 0, Go F' does not satisfy (N) and the proof of the ncces-
sity is complete.

Suppose that F is continuous and satisfies (S’). We shall construct
two homeomorphisms, G and H, of [0,1] onto itself such that HoGoF
is differentiable. Without loss of generality, assume that F maps [0, 1]
onto itself. Let (a, b) denote the open interval from a to b, where a < b

or b< a.
For J = (y4, ?/2)} set

e(J) = e(yy,¥s) =infl{e|IE> [E| =¢ and J < F(F)}.

Set G,(y) = (0, y) for y € (0, 1] and set G,(0) = 0.

(a) G, is strictly increasing.

Suppose that 0 < y, < ¥, and F(x,) = y,. Given 5 > 0, choose E,, F,,
and E, such that

By <« F7H0,y5), |Hol<e(0,92)+n and (0,9:) < F(E);
E, c F7H0,y.)nE,, |E<e(0,9))+n and (0,y,) < F(E);
E, « F ' (y1, ¥2) 0By, |Ba| < e(yr,¥s)+n  and  (y1,9:) < F(E).
Since the single point y, can be covered ﬁy F(x,), we have

(0, ¥5) < |By| + 1 B,] < €(0, y1) +€(y1, ¥2) +29
and .

(0, ¥1) +e(yy1, ¥a) < |E, | + | Byl < &(0, y5) + 1.

Since n > 0 is arbitrary, we obtain

(0, ¥,) + (Y1, ¥a) = £(0, 95).
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Then Go(y,) —Go(¥a) = ¢(¥1,¥3) > 0 by condition (S’), and @, is
strictly increasing.

(b) @, is continuous.

Let {y,}s-, be an increasing sequence whose limit is y. Set y, = 0.
Choose {z,}n-, such that F(®,) =y,. Choose E, = F~'(y,_,,¥y,) such
that (¥,—1, ¥,) < F(E,). Then the E, are pairwise disjoint and

D 1B, <1.
n
Hence
lim | Bl = 0.
lim 5,
Since

W) = F(U BJUF(ie)) and o} =0,
we have

Go(9) —Go(Yp) = &(¥n, 9) < D) |yl
k=>n

which tends to 0 as n tends to infinity. The proof for a decreasing sequence
is analogous and the continuity of G, is established.
(¢) For ,, x, in [0, 1],

IGo (F(m1)) -G, (F(a’a)” < |®,— @,
Since (G, (F(21)), G, (F(2,))) < Go(F[my, 2,]), We have

[y — @3] > int{|B||(F (2,), F(2)) = F(B)}
= G(F(“’ﬂ, F(z,)) = IGo (F(ah)) —G, (F(mz))l.

Noting that G,(1) > 0, set ¢ = 1/G,(1) and G(y) = qG,(y). It follows
from (a) and (b) that @ is a2 homeomorphism of [0, 1] onto itself. Letting
K = @oZF, (¢) implies that '

| K (21) — K (24)] < |2, — 4]

for all »,, #, in [0, 1]. ‘
This uniform Lipschitz condition implies that K is absolutely contin-
uous. Consequently, the sets @ = {w|K’(x) does not exist} and K (Q)
are both of measure zero.
Let R be a G,-set of measure zero which contains K(Q) and let F
= [0, 1]\R. It is clear from [3], Section 2, p. 3, and Theorem 8, p. 35,
that F is a set for which there exists a derivative k(#) such that h(f) = 0
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forte Rand 0 < h(t) < 1l forteE. Let

1
o = [ h(t)at
0
and set

v
H(y) = a~! | h(t)ds.
0

H (y) is strictly increasing since h(¢) > 0 on F and E is of full measure,
H(0) = 0 and H(1) = 1. Since & is a derivative, H'(y) = a~'h(y) for all y.
In particular, H'(y) = 0 for y € R.

If z, ¢ Q, then K'(x,) exists and Ho K is differentiable by the chain
rule. 4

If v,€Q, then K(x,)) € K(Q) < R. For a point # at which K(z)
= K (w,), we have

|H(K(w))—H(K(mo)H/lm—mo[ = 0.
If K(r) # K(x,), then
|H (K (#)) — H (K (a,)) | / | — @] < q| H (K (2) — H (K (,)) | / |1 K (#) — K (,)|

by the Lipschitz condition. This last quantity tends to 0 as » tends to z,,
gince H'(y) = 0 on R. Therefore, Ho K =HoGoF is differentiable at
each x in [0, 1] and the proof of the theorem is complete.

‘We note that ACG* functions belong to J since
AOG* = [(T,) and (N)] < (8) = (8') « Fed.

’ We next show that there are ACG functions which do not belong to 7
and members of 4 which fail to satisfy (T,).

Example 1. There exists an ACG function F which does not belong to 7.

Construction. The function F' will be defined in such a way that
F~'(y) is infinite for all but a countable number of values ¥ in its range.
Then, if @ is any homeomorphism, (Go F')~!(2) is infinite for all but a count-
able number of values 2 in its range. Since Go F does not satisfy (T,),
it cannot be differentiable and F ¢J .

Let C be a Oantor set of positive measure such that, for open inter-
vals I,

INC #0 = |InC|> 0.
Let f(o) =0if o¢C, f(») =1 if »eC and

Fo(a) = [ f(t)at.
0
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For each integer n, select a sequence of intervals I, = (a,, b,,) con-
tiguous to C so that

limb, =1, lima, =0 and n<n' =a,<a,.
n—>o0 n—»—00

Let
= % (a + bn)

and define F, (z) to be F,(x) if » ¢ U I, Fi(c,) = Fy(b,_,) and define F, ()
linearly on the intervals (a,,, c,) and (Cns b,). Assuming that F,(x) has
been defined, define ¥ .,(») inductively as follows. For each integer =,
select intervals

Inlnz...nkn = (anlnz...nkn7 bnlnz...nkn)

contiguous to C so that

lunbnlnz...nkn = a’nlnz...nk+17 lim anlnz...nkn = bn1”2~--"k

n—>00 n—+—o0
and

’
nln = anlnz..-nkn < a’nlnz...n‘kn"
Let
cnlnz...nknk_l_l = % (anlnz...nknk+1 + bnlnz...nknk_*_l).

and put '

Fk+l(w) = ‘Fk(w) if & ¢ UInlnz...nknk_,.l
(the union extends over all (k- 1)-tuples),

Fk+1 (Gnlnz...nknk_'_l) = Fk(bnln‘z...nknk_l_l—l)
and define F,,, linearly on the intervals

oﬂvlﬂz. . .nkﬁk+1

) and (e

(a'"l"z-- Pk +1? nyny- - NENE 41 ? b”l“2"'”k”k+1) :

Since F (x) is a uniformly convergent sequence of continuous functions,

F(2) = im F, (o)
k

is continuous. We observe that F(x) is ACG by noting that F(x) is abso-
lutely continuous on ¢ and on each interval contiguous to C. It follows
from the construction that, given any y e rng F, with y # Fy(1), y # Fo(0),
and y # F,(t) for ¢ an end point of an interval contiguous to C, and for
each natural k, y belongs to some interval (Fy(b, ), Fo(a

172Nk ”1"2"'”k+1))'
Thus, for each k, there is an z,e|JI,

such that

172:- P 1

mk € (b"l"z'"”k’ anlnz...nk_l.l) and Fk+l (mk) = F(wk) = y'
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It follows that F~'(y) is infinite except on an at most countable
collection of y erngF#;, = rngF.

We note that this F satisfies (N) and hence (S'), which indicates
that (S') and (S”) are not equivalent.

Example 2. There i3 a funclion F' which belongs to I but does not
satisfy (T,). ‘

Construction. For each number # in the Cantor ternary set C write

G@) = Y a,-37", wheres = ) 43,4, =0 or 2.
1 i

Extend G(z) to a continuous function on [0,1] by defining G(2)
to be linear on -intervals contiguous to C. If

yeC and y= Zb,--?»“,
then each number x of the form

2 a;-37%, where a,;, = b; and a,;_, = 0 or 2,
i

maps onto y. Therefore, G maps C onto C and, for all y € C, G '(y) is
uncountable. Since G takes C onto. C and is linear on intervals contiguous
to C, @ satisfies (N) and hence (T,). In fact, if y, belongs to an interval J
contiguous to C, the line ¥y = y, meets only finitely many of the linear
segments of the graph of G (). (All of these linear segments are of length
greater than |J| and, due to the continuity of @, there can only be finitely
‘many meeting ¥ = y,.) Now G(z) also belongs to 7. For let J be an inter-
val in the range of @, let J, = J be an interval contiguous to C, and-let M
be the maximum of the absolute values of the slopes of the finitely many
linear segments which cross a given line ¥y = y, with y, € Jy: Then, if G
takes a set E onto J, then since | (z)| < M on E' = EnG~'(J,), we have
IJy] = |G(E') < M|E'| so that |E|> M~'|J,|. Since M >0, M~!|J| > 0
and @ satisfies (S') and hence belongs to . Now let K (y) be a homeomor-
phism which takes C onto a perfect set ¢’ of positive measure. Let F = KoG.
Then, for each y € C', F~'(y) is uncountable so that F does not satisty (T,).
However, F' = KoG,G €7, K is a homeomorphism, and thus FeJ.

The following proposition and example show the extent to which
members of I must be differentiable.

PrOPOSITION. If F belongs to T, then {z|F' (x) exists} has positive
measure in each subinterval of [0, 1].

Proof. Let ¥ = Ho D, where D is differentiable and H is & homeo-
morphism. Let J be a subinterval of [0,1]. If D is constant on J, then
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F'(z) = 0 on J. Otherwise, D(J) is & non-degenerate interval and, since H
is & homeomorphism, the set

Q@ = {yeD(J)|H'(y) exists)

satisties |Q| = |D(J)| > 0. If v e D '(Q)nJ, then F'(z) exists by the
chain rule. In view of D (D~'(Q)nJ) = @ we have |[D™'(Q)nJ| > 0, since D
satisfies condition (N).

Example 3. There exists a function F in I which fails to be differ-
entiable on a set of positive measure.

Construction. An ACG function F which fails to be differentiable
on a set of positive measure is constructed in [2], p. 224. Since F is ACG,
it satisfies condition (N) and it is easy to verify that it satisfies condition (T,).
Thus F belohgs to 7.
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