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In 1976 C. A. Eberhart, J. B. Fugate, and G. R. Gordh, Jr. (see [3], p
413) asked “Is every graph the weakly confluent image of a finite tree?”. In
the same year, using universal covering space techniques, B. B. Epps
published an affirmative answer to this question (see [5], Theorem 1, p. 220).
Moreover, it is easy to show that no cyclic graph is the image of a finite tree
under locally confluent (thus also under confluent and open, respectively)
mapping. In the paper [2] a concept of generalized graph is introduced. In
this paper it is shown that 1) each generalized graph is the open image of a
generalized tree, 2) each generalized graph is the weakly confluent image of a
generalized tree, and 3) a cyclic generalized graph is a simple closed curve if
and only if it is the locally confluent image of a generalized tree. As a
consequence of 2) we obtain Epps’ Theorem 1 mentioned above.

The proofs, presented below, are quite elementary and use geometrical
methods. i

All spaces considered here are metric. A graph means a one-dimensional
connected polytope. A space is called a generalized graph if it is connected
and if it can be embedded -into a graph. An acyclic generalized graph is
called a generalized tree. We denote by R(G) the set of all ramification points
and by E(G) the set of all end points of the generalized graph G, and we put
V(G) = R(G) U E(G). An arc ab contained in the graph G is called a maximal
free arc of G provided that {a, b} =abnV(G). A continuous surjection
f: X —Y of a topological space X onto a topological space Y is said to be

— open if the image of any open set in X is open in Y;

~— confluent if for every continuum Q c Y and for each component C of
S71(Q) we have f(C) =Q;

— weakly confluent if for every continuum Q < Y there is a component
C of f7'(Q) such that f(C)=0Q.

THEOREM 1. Each generalized graph is the open image of a generalized
tree.
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Proof. Let a generalized graph Y be given. Since a circle S is the
image of a generalized arc under an open mapping g: (0, 1) » S given by
g(t) = exp(3nit), we assume that Y is not a circle. Moreover, if Y is a
generalized tree, then the theorem is trivial, so without loss of generality
we can assume that Y is not a generalized tree, too. Let

(1) Ay, A, ..., A,

be a sequence of all maximal free arcs and of all simple closed curves with
exactly one ramification point that are contained in Y.

We construct a generalized tree T contained in Y as follows. According
to the assumption, Y contains a simple closed curve. We take an arbitrary
member A; of (1) lying in a simple closed curve in Y, and we denote by B, an
arc contained in Int A4;. Put Y, = Y\B,. If Y, is a generalized tree, we define
T =Y,. If not, a simple closed curve is in Y;, and the inductive procedure is
continued. Since (1) is a finite sequence, the inductive procedure is finite and
it leads to a generalized tree T. Therefore, there is a natural number k < n
such that

k
) T=Y\B=Y\U B,

To define a continuous surjection f: T— Y which is open we need
some auxiliary denotations. In each member A4; of (1) that contains some B,
where je {1, 2, ..., k} (see (2)), we take a maximal free arc wz contained in
the closure of T with we R(T) and z¢ T. Let U denote the union of all such
arcs wz. Put W=T\U. .

Now we define f as follows. f|W is the identity, while f|wz\ {z} is any
homeomorphism of wz\ {z} into A; with f(w) =w and f(wz\ {z}) > B}, and
such that both x and f(x) are contained in wz\ {z} whenever x lies closely
enough to w.

It is easy to verify that f is well defined, continuous, open and onto.
The proof is complete.

Now, we recall the second part of a well-known result of Whyburn (see
Theorem (1.1) in [8], p. 182) which says that if f: X - Y is an open
mapping from a linear graph X onto a metric space Y, and if J is any simple
closed curve in Y, then there exists a simple closed curve C in X such that
f(C)=J and, on C, f is topologically equivalent to the function w = z* on
the unit.circle |z| = 1, where k is an integer.

This result and Theorem 1 imply

CoroLLArY 1. Each cyclic generalized graph is the open image of a
generalized tree but never of a tree.
Now, we come back to the function f: T — Y defined in the proof of
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Theorem 1, and note that
(3) f is not weakly confluent (thus it is not confluent).

Indeed, let B; (je(l, 2, ..., k}) be any arc defined above. Then there is a

member A; of (1) such that B; — A4;. By the second part of the definition of f

we see that f~! (A4;) consists of two different generalized arcs, both denoted

by wz\ [z}, but no one of them is mapped onto A4;. So (3) is established.
However we have

THEOREM 2. Each generalized graph is the weakly confluent perfect
image of a generalized tree.

Proof. Let a generalized graph Y be given. Since a circle S is the
image of an arc under a weakly confluent mapping g: [0, 1] - S given by
g(t) = exp(4nit), we assume that Y is not a circle. Moreover, we assume (as
in the proof of Theorem 1) that Y is not a generalized tree. Let sequence (1)
have the same meaning as previously in the proof of Theorem 1. Put A4

= (J 4;, and note that A =Y if Y is compact. Otherwise Y\ A is the union
i=1
of some generalized arcs (arcs without their end points). Denote by T(Y) a
family of all generalized trees T contained in Y such that each component of
Y\T is an arc without its end points, Y\A < T and V(Y)nY\T = 0.
Note that

(4)  for each subgraph Q of Y there is a generalized tree Te T(Y) such that
T nQ is connected and, moreaver, it is a member of the family 7(Q), where
T(Q) is defined analogously to T(Y) (ie, if T'eT(Q) then V(Q)n

NQ\T = 0).

Indeed, Y contains a simple closed curve. If there exists a member A; of
(1) lying in simple closed curve in Y and not contained in Q, let B, | denote
an open arc such that B; < B; < Int 4; \Q. If there is no such 4, we let
A;, be any of them (contained in simple closed curve in Y) and we denote
by B; an open arc such that B; cB,.l cA;,.Pu Y, =Y\B, . If Y is a
generalized tree, we define T = Y,. If not, a simple closed curve is in Y,, and
inductive procedure is continued.

It follows from the construction that T N Q is connected. Thus TN Q is
a tree. By definition of T(Q) we see that T~ Qe T(Q). Since (1) is a finite
sequence, the procedure is finite. So (4) is established.

Now we define an equivalence relation ¢ on T(Y) putting (T;, T)eg
provided that for every A; of (1) we have A, c T, if and only if 4, c T;.
Consider the quotient space T(Y)/g, and note that

(5) the set T(Y)/o (whose elements are the g-equivalence classes) is finite.
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We put m =card(T(Y)/g) and let {T}, T5, ..., T,,} be any system of
representatives for T(Y)/g, i.e,, a set of elements, one from each equivalence
class. Further fix a point re V(Y). Since V(Y) < T, for each je{l, 2, ..., m},

we have reN {T;: je{l,2,..., m}}. Consider the free union @ T; of all
j=1
generalized trees T; and let r; be the copy of the point r in T; for each

jeil, 2,...,m}. Thus r;eT,.

Further, let ¢ denote an equivalence relation on él-) T; which identifies
the points r; for every je {1, 2, ..., m} only, ie, all eqjl:i:/alence classes of ¢
except {r, r,, ..., ry} are one point sets. Then the quotient space E"I'») T/o is
a generalized tree consisting of copies of the generalized J—t;ees T;
(je!l, 2,...,m)), ie, it is homeomorphic to the one-point union of the

generalized trees T,. We put @ Tj/o = X. So X is a generalized tree.
j=1

To define a continuous surjection f: X —Y which is weakly confluent
we need some auxiliary denotations.

Let p: @ T; - X be a natural projection of. @ T, onto X. Furthermore,
=1 j=1

for every jel, 2, ..., m} let g;: T, —» Y be a natural embedding of T, into Y

and let g: @ T,—> Y be their unique common extension (i.e, q|T, = g; for
j=1

each je!l, ’2 ....m!). We put V =p(qg~'(V(Y))) and let W be a generalized

subtree of X such that E(W)cVcW and Wop(qg '(Y\A4) (W#0

because Y is not a circle).

Note that the closure of each component of X\ W is an arc with one
end point in W. Take an arbitrary arc wz being the closure of a component
of X\W, where weW, and put wz' =q(p~'(wz)) = Y, where q(p~'(w))
= w'e V(Y). Then there is exactly one A4; of (1) such that w'z’' = A;.

Now we define f as follows (see the diagram):

(i) fIW: WY is defined by f(w)=¢q(p~'(w)) for each point we W.

(i) If a component of X\W is given, we take the arc wz being its
closure, with we W, and a member A; of (1) such that w'z’ = A;. Consider
two cases. First, if A; is an arc, then we define f|wz as an arbitrary
homeomorphism of wz onto A4; with f(w) =w. Second, if 4; is a simple
closed curve, then we stretch out the arc wz onto A; such that for each point
xewz which lies closely enough to w, its image f(x) is in w'Zz’.

X ! —» Y
\ /
. m
D7

J=1
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It is easy to verify that f is well defined, continuous and onto.

We shall show that f is weakly confluent. To this end we take any
subcontinuum Q in Y. Assume first QN V(Y)= 0. Then Q is the arc
contained in some A; of (1). Therefore, for each je {1, 2, ..., m} there is an
arc E; = T; such that the partial mapping f|p(E;) is a homeomorphism.
Hence p(E)) is the component of f~!(Q) and f(p(E;)) = Q. Assume second
ONnV(Y)# 0. Then by (4) there is Te T(Y) such that TnQe T(Q). Let
je{l, 2, ..., m} be an index such that (T, T)eg. Thus ¢;(T) N Q is a member
of the family T(Q). We put P’ =q;(T)nQ and P = p(q; ' (P')). We see that
P is homeomorphic to P'. Further, since f| P~ W is a homeomorphism (see
(1)) and the arc wz = P\ W is mapped onto the whole 4; o w'z’ (see (ii)), we
conclude that f(P) contains Q. If f(P)=Q, then f~'(Q) containing P is
mapped onto Q under f If f(P)# Q we consider any maximal free arc
wz < P with f(wz)\Q # 0. By (ii) there is a subarc we < wz such that f(we)

=w'e’, where ¢ =« Qn f(P)\Q and moreover f|we is a homeomorphism.
Further, we have f(we) = Q. Let Z denote the union of all arcs ez = wz with

f(wz)\Q # 0, and put D = P\Z. The set D is connected because Z is the
union of end-arcs of P. So D is a continuum. It follows from f(P) > Q and
from the definition of D that f(D) = Q. Thus D = f~!(Q). Hence there is a
component C of f~'(Q) containing D. Therefore Q = f(D) = f(C) < Q, so
f(C)=0. ,

Finally we show that f is a perfect mapping. Indeed, for each point y in
Y we have card £~ (y) < 2m < N,. To observe that f is closed we note that if
T/ in X is the copy of T; in Y then f|T; is a closed mapping, for each
jell,2, ..., m}. The proof is complete.

As a consequence of Theorem 2 we get

CoroLLARY 2. (Epps’ Theorem). Each graph is the weakly confluent
image of a finite tree.

In fact, compactness is an inverse invariant of perfect mappings (see
Theorem 3.7.24 of [4], p. 242).

Remark 1. A well-known result of Whyburn (see Theorem (7.5) in
[8], p. 148) says that if f is an open mapping from a compact set, then f is
confluent. By (3) above we see that the compactness assumed there is
essential to attain the conclusion.

Remark 2. A simple closed curve is the confluent image of a
generalized tree.

Indeed, we take a unit circle S = {z: |z] = 1}, where z is a complex
number, and let I denote the interval (—n/2, n/2) of the real line R. Further,
we define two continuous surjections: f: /] >R, x—>tgx; g: R—S, x
— (cos 2nx, sin 2nx). Put h = gf. It is easy to verify that h is confluent and
closed (cf. [7], Theorem 3.2, p. 186).
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THEOREM 3. No cyclic generalized graph except the simple closed curve
is the locally confluent image of a generalized tree.

Proof. Suppose the contrary, and let Y denote any cyclic generalized
graph which is different from a simple closed curve and such that there is a
generalized tree T and a locally confluent mapping f from T onto Y. Since
local confluency of a mapping onto a hereditarily arcwise connected space is
equivalent to its confluency (see 5.3 of [6], p. 110) we conclude that f is
confluent. Further, let S be any simple closed curve in Y, and C a component
of f=1(S). Thus f|C: C - S is confluent and C is not a tree because the
confluent image of a tree is a tree (see [1], X, p. 216). Thus there is a tree G
such that G\C is a finite set (see Theorem 1 (iii) of [2], p. 337). We put
E(G)\E(C) = {e,, €5, ..., €, and let a,e,, aze,, ..., a,e, be arcs in G such
that for every ie{l, 2, ..., n}, a;¢ R(T) and the arc g;¢;\{q;, ¢;] is open in T.
We note that there is an index je {1, 2, ..., n] such that f(a;e;\{¢;}) is non-
degencrate. By assumption S contains at least one ramification point of Y.
Therefore, by confluency of f we infer that f(a;e;\ le;)) is an arc in S with
end points f(a;) and e. Now, let U be a closed connected neighborhood of e
such that (U\{e})n(V(Y)u{f(a)})= O, and let K be a component of
f~'(U) such that (g;¢;\{e;}) " K # @. Thus we have U\ f(K) # @ contrary
to confluency of f. The proof is complete.

Let us note, in connection with Theorem 3 and Remark 2, that we have
the following characterization of a simple closed curve.

CoroLLARY 3. A cyclic generalized graph is a simple closed curve if and
only if it is the locally confluent image of a generalized tree.
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