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IN THE FILTRATION PROBLEM
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TADEUSZ SLIWA (WROCLAW)

We consider the Cauchy problem

ou  Pp(u)
1) ot oxt ’
(2) u(@, 0) = u,y(2),

where ¢ (%) i8 a given function defined for » > 0, and u,(x) > 0 is a bounded
continuous function in R.

Definition. Let 8§ = {(#,?): x e R,t> 0}. A function u(z,?)>0
defined in 8 is & weak solution of problem (1), (2) if

u € C°(8)nL>(8), —?ﬂ%%’t—)) e L=(8), wu(-,0) = u,
and
(3) f f [3¢ dp(u) _ u]dwdt - f @ (@, 0)uy (@) dz

for all @ e C}(8).
Hereafter we assume that

(4) @(u,) is Lipschitz continuous on R;

(6) @eC®((0, +o0)), ¢ is Llpschltz continuous on any compact
subset of (0, 4 o00);

(6) @(u)>0, ¢'(u) > 0 for « > 0, and ¢(0) = ¢'(0) = 0;

" ¢ (a)
(7) f"’a da < oo for all u;
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(8) forevery N > 0 there exist constants a, 8, y (¢ > 0,0 < < 1,9 > 0)
such that ¢ (u)/(¢’(v))* > a and ¢’(u) > yp°(u) for 0 < u << N.

Olelnik et al. [6] have shown that if conditions (4)-(6) hold, then
problem (1), (2) has a unique weak solution %, and u satisfies equation (1)
in the classical sense in the neighbourhood of every point of § at which »
is positive.

Let suppu, = [a,, a;] and let « be a weak solution of problem (1), (2).
Then from Theorem 21 and Remark 2 in [5] it follows that the set P[u]
= {(z,t) € 8: u(x, 1) > 0} is bounded by the interval [a,, @;], by & con-
tinuous monotone non-increasing curve # = {;(¢t) through (a,, 0), and by
a continuous monotone non-decreasing curve x = {,(tf) through (a,, 0).

Aronson [3] has studied the case in which ¢(u) = «™ (m > 1) and
has obtained a more precise characterization of the interface, that is,
of curves @ = {,(t).

From our assumptions imposed upon ¢ and from the implicit function
theorem it follows that the equation

f <p"(1a) da =0

defines

(9) u = y(v)

in a unique way. Putting (9) into (1) and (2) we get
30

and

(11) 9(2, 0) = v,().

A function v(x, t) is said to be a weak solutton of problem (10), (11)
in 8 if v = y(v) is a weak solution of problem (1), (2) in 8 with initial
data u, == y(v,).

THEOREM. Let u, € C°(R)NL™(R), uy(x) >0, suppu, = [a,, a,] and
let oo'ndz'tiom (4)-(8) be satisfied. Assume that

azv(w ° I\ <M for all te[v,T], 2€(Li(t), &) 0<T<T< o),

where v(x, t) is given by (9) and u(w, t) is a weak solution of problem (1), (2).
Then ;e C'([r, T]), and the limits

. Ov(w,t) O )
Jim SR = ol t) (=1,
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exist for all t € [v, T] and
GO = ——-(6(t),1) for all te[x, T]

(here and elsewhere in f.his paper & — {;(t) means & — {;(t) —(—1)'0).
Proof. We observe that the boundedness of the function é&*v/dz*
for ¢t e [v, T] and = €({y(?), {5(?)) implies that the limits

. ov (2, 1) _ 0 .
Jim == = ol G=1,2)

exist and are finite.
We now prove the continuity of the functions

0
22 260,97, T].

Let t,, t e [t, T], t, —t. Define the functions f} and f* by

fil@) =v(@+i(t) —an ), f(@) =v(@+(t)—a,t),
where¢ =1,2, n =1, 2, ..., € [a,, a;]. We can prove by the arguments

similar to those used in the proof of the Theorem in [1] that there exists
a constant C > 0 such that

o
(12) 'jﬁ

<0 for te[r, T], 2€(li(t), {a(?).

If conditions (4)-(6) and (8) are fulfilled, then by Theorem 2 from [6]
there exists a continuous non-decreasing function g(s) (o(0) = 0) such
that

(13)  |u(z,t)—u(@,8)|<o(t—8]) for zeR,t>7, 827 (v>0).

It is easy to verify that the inequality

(14) o0, <y p(os) —plo) +2 sup o' () LY
. u<y(vy) y(v,)

holds, where 0 < v, < vy, and the function y is defined by

_ AC)
v (u) = ? % da.
J

a
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Hence, by (12)-(14), the function o(x, f) is uniformly continuous on
the set {(z,t): x €(ly4(2), {2(8)), ¢ €[, T]}. This implies

L3 T

The uniform boundedness of the functions {(fi)”’} implies that the
sequences {(f})’} (# = 1, 2) are compact in uniform convergence topology.
Therefore (since f: 3 i)

> b .0 )
(fA) F (fy and ,I:’Il;-a;v(cg(t,.),t,,)=-5w-o(c,(t),t).

The Theorem follows immediately from
LeEMMA. If the assumptions of the Theorem hold irue, then for any
e > 0 there exists a 8 > 0 such thai
$4(t) —&4(8) 4

(15) o + P v({i(8),8)|<e (1=1,2)

Jor 8, te[r,T], 0<t—s8 <.
Proof. We prove inequality (15) for ;.
Let r<8 <T and &> 0. For convenience we write

/)
i =¢8(8) and p= "a;”(cn 8).

By repeated integration, with respect to » in the interval ({,, )
(x €(£1(8), {s(8))), of the inequalities

—-M < pn v(r,8) < M
we obtain
M
~ S @ty <ol ) —p@—t) < 5 @t
Hence
M M
(16) — T(w—ﬁ)’ +r@—§) <v(z,8) < '2—(‘” =Ll +p(@—1{y).

It is easy to verify that the functions
v,(2,t) = max{0, (p—&)(@—{;)+(p —e)’(t"")}y
v3(z, 1) = max{0, (p+e)(@—{1)+(p+e)(t—a)}

are weak solutions of (10) in the domain R X [s, T'].
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From (16) it follows that

o(@, 8) — (@, 8) > e(@— ) — (&G0,

M
v3(2, 8) —v(z, 8) = e(x — () -"‘2“‘(37’_4'1)29

whence
0,(2,8) < v(v,8) <v(x,8) for <2 =, +—,

&2 a
_2?[—, 03(Zo, 8) — (2, 8) =

The last inequalities imply

(%o, 8) —0,(@0, 8) >

(17) U (7, 8) < u(z, 8) < uy(z,8) for z< 2,
(18) U(Toy 8) — Uy (T, 8) = C,  Uy(@o, 8) —u(w,, 8) > C,
where 4; = y(v,) (¢ =1, 2), v = y(v), the function y is defined by
u ’ a
vio) = [ 12 4o,
[}

a

and the constant C > 0 is independent of s. Inequalities (18) follow at
once from (14). By (13) and (18) we get

(19) Uy (2o, 1) < U(Dy,y ) < Ug(®y,t) for s<<t<8+6, 6 = g'l(-g—).

From (17), (19) and from Theorem 18 in [5] it follows that

Uy (7, t) < u(@, t) < us(a, t),
and hence

(20) 01(2, 1) < v(2, 1) < vy(@,8) for <2, 8<E< 840,
According to the definition of v, (¢ = 1, 2) and (20) we have
L—(@+e)(t—8) <L) <&L—(p—8)(t—8) for s<i<s+d,

which gives (15) for ¢ = 1.
The proof of (15) for ¢ = 2 is similar and we omit it.
Unfortunately, we do not know by our theorem what assumptions
on v, guarantee boundedness of ¢*»/92* in P[u]. The example given in [2]
shows that |0%»/d2*| could be unbounded even if v, € C*([a,, as]). If v,
is absolutely continuous and if

essinfv, (¢) > —a,
[al,a.zl
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then it can be shown that é*v/dw® > —a in P[u] (the proof is the same
a8 that of Lemma 2 in [3]). If, additionally, v, is concave downward on
[a,, ag], then from Theorem 8 in [4] it follows that v is also concave down-
ward as a function of z on [{,(t), {,(?)] for each ¢t > 0. 8o, in this case,
—a< /0 <0 in Plul.

REFERENCES

[1] D. G. Aronson, Regularily properties of flows through porous media, SIAM Journal
on Applied Mathematics 17 (1969), p. 461-467.

[2) — Regularity properties of flows through porous media: A counterezample, ibidem
19 (1970), p. 299-307.

[3] — Regularity properties of flows through porous media: The interface, Archive of
Rational Mechanics and Analysis 37 (1970), p. 1-10.

[4] J. L. Graveleau and P. Jamet, A4 finile difference approach to some degenerate,
nonlinear parabolic equations, SIAM Journal on Applied Mathematios 20 (1971),
p. 199-223.

[5] O. A. Oneiinnx, A. C. Kanamaakos ® Uxoy IO#-JInas, 3a0ava Kowu u xpaeswie sadauu
0AR ypasHewuii muna necmayuonaproii ggussmpayuu, zsectus Axanemam Eayk CCCP, cepus
matemaTmieckas, 22 (5) (1968), p. 667-704.

[6] T. Sliwa, On the Cauchy problem for the equation of one-dimensional non-station-
ary filtration with non-continuous initial data, Colloquinumm Mathematicum 44 (1982)
(to appear).

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROOLAW

Repu par la Rédaction le 24. 11. 1977



