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1. Introduction. In 1967 Sikorski (cf. [4]) introduced the concept
of a differential space as a generalization of differentiable manifold. Inde-
pendently, Mac Lane (cf. [1]) introduced the same concept in his lectures
on foundations of mechanics. Any subset of the set of all points of a dif-
ferential space may be regarded as a differential space with the induced
differential structure. More exactly, if ¢ is a set of real functions on a
set M, then we have the weakest topology 7, such that all functions in
C are continuous on (M, 7). For any A < M one defines (cf. [4]) the set
C,4 of all functions f: A — R such that for any p e A there exist a e C
and U in 75, p € U, with 8|ANU = a|ANTU. In particular, we can take
A = M. We define (cf. [1]) seC as the set of all real functions of the form
w(ay(*)y ..., a,(*)), where a, ..., a, are in C, o is of class C* on R’ and
8 is any positive integer. We have C = C,, and C < scC. The set O satisfying
the equalities Cpy = C = scC is said to be a differential structure on M and
(M, C) is called a differential space. Then, for any A < M we have a differ-
ential space (4, C,).

In the Cartesian space R" we have the natural differential structure
E,, denoted shortly by E, which is composed of all real functions of class
C* on R". If M is a subset of R", then we may consider M together with
the differential structure F,,. In particular, in the theory of differential
spaces, the concept of tangent space at each point of the space is considered.

Let (M, C) be a differential space and p € M. Following Sikorski,
we denote by (M, (), the tangent space of (M, C) at p. The vectors of this
space are linear mappings » of ¢ into R such that v(af) = a(p)v(f)+
+ B(p)v(a) for a, g € C. In the natural way, C is regarded as a linear space.

There is a natural isomorphism (cf., e.g., [3] and [2]) between the
vector space (M, C), and the vector space T,(M, C), dual to the linear
ring C(p, 0)/C*(p, 0); here C(p, 0) is the ideal of all germs at the point
p of functions a € C, a(p) = 0, in the linear ring of all germs at p of func-
tions belonging to C (with respect to topology 7,) and C*(p, 0) stands
for the square of this ideal, i.e. C*(p, 0) is the ideal of all germs
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Exm+ ... + &m,, where &, 7,,...,&,7n, are in O(p,0) and s is any
positive integer.

For any & in C(p, 0) and for any subset A of M, p € A, we can define
&, as the germ in C (p,0) such that (a|4,p) e {,, where (a,p)€é.
We denote by [£]; the coset of & in T (M, C), where T; (M, () stands
for C(p, 0)/C*(p, 0). Similarly, for x in €, (p, 0) the coset of u in Tp(4, C,)
will be denoted by [u]c, - It is easy to check the following

ProPOSITION 1.1. If p € A < M, then we have the epimorphisms

Em &y 0(?70)_>CA(P70)9 § [£lo: 0(1’70)_)1,;(1”70))
p e [Blo,: Calp,0) >Th(4,0,)
such that the diagram

C(p, 0) —> O 4(p,0)

| |

T3(M, C) —> Th(4, Cy)

is commutative. In particular, dimT,(4, C,) < dimT,(M, ).

For any M < R™ we denote by T, M the vector space Th(M, Ey).
It is easy to check that dim T, R" = n.

PROPOSITION 1.2. If p € M < R", then dim (M, E,;), = dimTpM < n.

Proof. By Proposition 1.1 we have dimT,M < dimT,R" =mn.
To complete the proof it suffices to take an isomorphism between the
finite-dimensional vector spaces T,(M, E,) and T,(M,E,), and the
natural isomorphism (see [3] and [4]) between T,,(M, By) and (M, Ey),.

We recall (cf. [1], [4]) that f maps smoothly (M, C) into (N, D),
which we write

(1.1) f: (M, C) > (N, D),

if f maps the set M into the set N and for any f € D the real function
pof is in C. For every point p € M the mapping (1.1) induces the linear

mapping
fop: (M, C)p - (N, D)y

of tangent spaces, called the tangent mapping to (1.1) at the point p, where
for any v in (M, C), and for any g € D we set f.(v)(B) = v(fo f).
In particular, if M < R", then the identity mapping

(1.2) iy (M, Ey) — (R, E)
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induces the tangent mapping
(1.3) iatep: (M, Ey), — (R, E),.

If w e (R, B), is of the form w*(9/dx;),, where (0/0x;), denotes the
partial derivative at p of the functions in ¥, then

(1.4) w > w, Where w = (w?, ..., w"),

establishes an isomorphism between (R", E), and the vector space R".
The hyperplane M, derived from (M, E,), by taking the mappings ¢y,,,
w — w, and the translation ¢ — p+¢ will be called the tangent hyper-
plane to the differential space (M, E,,) (or shortly, to the set M) at
the point p.

2. The hyperplane of directions at a point. We say that the sequences

(2.1) D1y Pyy ... and Py, p;, ...

of points belonging to the subset M of R" determine a direction 1 of M at
p if the sequences (2.1) tend to p, p, # p; for k =1,2,..., and

(2.2) (Pr—Pi) 1P —DPel ™' >1  as k — oo.

Obviously, |I|] = 1. A direction ! defined by some sequences (2.1)
of points in M is said to be a direction of M at p. The smallest of all hyper-
planes containing p as well as all points p 41, where ! is any direction of
M at p, will be called the hyperplane of directions of M at p and denoted
by MZ.

PROPOSITION 2.1. For every p € M we have M%< M,.

Proof. Let I be any direction of M at p. We have some sequences
(2.1) tending to p such that (2.2) holds. For any real function a in E,,
there exist a neighbourhood U of p and a function g in ¥ such that
a|lMNU = B|MnNU. There exist real functions g; of class C* on R" xR"
such that for every ¢ = (¢%, ..., ¢") and ¢’ = (¢, ..., ¢®) in R we have

Bd)—B(@) =Bi(d, D(a*—d), Bi(p,p) = (8]0x,),(B).
Hence

(a(r) —a(pe) 1Dk — Pl ™ = (B(Pr) —B(P2)) 1Pk — Pil ™
= Bi(Dry D) (DK —D3) 11— i)™ — (8/0m;), (BT as k — oo,

where p, = (Dy -y PR)y P = (Pif5 -y 1), L= (', ..., 1"). The number
(0/0m;),(B)V is independent of the choice of the function . Then we can
denote this number by 1,(a), and we get a vector in M,,. It is easy to check
that the corresponding vector (iM,p(lp))“ is equal to I. Thus p+1 =p+
+(iM.p(lp))‘ is a point in M,, which completes the proof.
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As an immediate consequence of Proposition 2.1 we have

PROPOSITION 2.2. A point p in M is a cluster point of M if and only
if dimM, > 1.

3. The local description of a subset of R". Let p € M c R". We will
consider any hyperplane H containing the hyperplane of directions of
M at the point p and we will examine the local situation of M with respect
to H. By B(p,r) we denote the ball with the center p and the radius r.
For any point ¢ of H the orthogonal complement of H passing through
q will be denoted by H . The set of all » > 0 such that for every ¢ in
HnNB(p, r) the set

(3.1) MAHLAB(p,r)

has at most one element will be denoted by M (p, H). For any r € M (p, H)
we consider the mapping pF, assigning to every ge HNB(p, r) such that
(3.1) is non-empty the only element pZ,(q) contained in the set (3.1).

The following proposition is obvious.

PRrOPOSITION 3.1. For any re M(p, H) the set MNB(p,r) coincides
with the set of all values of the mapping ph,;.

Now, we prove the following

PROPOSITION 3.2. If M2 = H, then the following conditions are satisfied:

(i) supM(p, H) > 0 and M(p, H) = (0; supM (p, H));

(ii) there exists an s € M (p, H) such that for any r € (0; 8) the mapping
pE, is uniformly continuous with respect to its domain.

Proof. (i) Assuming that M(p, H) = @, we have the sequence of
points g, €e HNB(p, 1/k) such that each of the sets MNH  NB(p, 1/k)
has two different points p; and p,. Then we have p, —p and p, —p as
k — oo, and the directions I, = (p;—py)|p, —p|™" are parallel to H;. .
Consequently, they are orthogonal to H. Passing to subsequences, if
necessary, we may assume that I, — [ as k — oo. Then we get the direction
1 of M at p, being orthogonal to H. Thus, I is orthogonal to M2, a contra-
diction.

Now, we set r, = supM(p, H). Thus we have r, > 0. The inclusion
M(p, H) < (0;7,) is obvious. First, let 0<t<r,. Then there exists
an re M(p, H),t<r<r,. Then, for every g e HNnB(p, r) the set (3.1)
has at most one element. Assuming that r, ¢ M(p, H), we should find
a point ¢ e HNB(p, r,) such that the set MNH{ NB(p,r,) has two dif-
ferent points ¢, and ¢,. Taking r such that

max{[p—ql, [p—@l, P — @I} <r<rp,

we get e HNB(p, r), ¢, # ¢z, and ¢,, 9. € MNnH;NnB(p,r), a contra-
diction.
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(ii) In the opposite case there should exist a sequence of positive
numbers 7, two sequences of points ¢, and ¢, belonging to the domain
of the mapping p, u Such that r, -0 as k — oo, |¢}, —q,| < 7,¢, and

1Pre —Dil = s Where P = Prin(q) and py, = prkM(qk) Then we have

D # Py Px€ MnHyNB(p,r,) and p;eMﬁH;;‘ﬁB(p,rk)-

Thus, p, —¢, LH and p,, —q; | H. Passing to subsequences, if necessary,
we may assume that I, = (9, —p,) |1Pr —2:™* =1 a8 k — oco. Obviously,
we have

b (@ — @) 192 — 2l ™ = (D1 — @) 195 — Dol ™ + (@ —22) 1D — 22| LH

and
@ — @) 1P — P2 ™ < 76rfer, = T

Hence, it follows that

H|L+(G—a)pe—2l™ =1 as k- oo.

Therefore, ! should be a direction of M orthogonal to H at p, and so
orthogonal to M3, which is impossible.

From Proposition 2.1 it follows that the tangent hyperplane M, may
be regarded as H in Proposition 3.2, which will be useful in the next
section.

4. Differentiability of the local descriptions. We have defined the
mappings p%, which describe the set M near to the point p with respect
to the hyperplane H. In this section we assume that this hyperplane H
coincides with the tangent hyperplane M, to the set M at the point p. Then
the mapping pf},, where H = M, will be denoted shortly by p,,. Now,
we will prove the main theorem of the paper.

THEOREM 4.1. If p e M < R" and dim M, > 1, then there exists a map-

ping f satisfying the following conditions:
(i) the domain of the mapping f is contained in M, and dense in ilself;

(ii) there exwists an r > 0 such that the set of all values of f coincides
with MNB(p, r);

(ili) for every q of the domain of f the orthogonal projection of f(q) onto
the tangent hyperplane M, coincides with q;

(iv) the mapping f has the derivatives of all orders at each point of its
domain with respect to any direction of the domain.

Proof. Let 6,,...,6, be an orthonormal basis of the linear space
obtained from M, by the translation q — q¢—p and let e,,,, ..., ¢, be
an orthonormal basis of the orthogonal complement to R" of this space.
Let e, ..., 6,, be the basis of the vector space (M, F ), defined by the
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equalities
én = (iMop(e;;))Ay h = 17 ceey M,

where iy,, is the tangent mapping (1.3) to the mapping (1.2), and ~ is
defined by (1.4). We set ¢*(q) = ¢,(¢q—p) for qeR*, k =1, ..., n. Evi-
dently, ¢*| M belongs to B,,, and ¢*(p) = 0. Let us remark that

n

6 (6% 1) = iagp(67)(6¥) = €}(0[0m)), (%) = €} D) 61 8] = D) el = e;04,

8=1 i=1
where ¢; = (¢, ..., ). In other words,
(4.1) 65| M) =8, it=1,...,m;k=1,...,n.

Denote by & the elements of the vector space T,(M, E,) such
that (6|, p) € 6* € & and 6" is a germ of my, (p). Now, we prove that
&, ..., e™is abasis for Ty (M, E,).

Indeed, let ¢, ..., ¢,, be reals such that ¢,e* = 0. Then there exist
germs Ay, Ay, ..y A4, 4, of myg, (p) such that

0 = LA+ ... +4,4,.

Hence it follows that for some functions y,, yi, ..., ¥,y 7. i E,
vanishing at p we have

(4.2) (MY = (r I VYRAIV)+ oo + I V(1 V),

where V is some neighbourhood of p, open in the natural topology of
the set M. Equalities (4.2) and (4.1) give

8
0 =2(3;(?’:)‘}';(1’)+7’¢(P)9;(7¢)) = cpeq(¢* | M) = ¢, 8} = ;.

=1

Then the system é',...,é™ is linearly independent. From Proposi-
tion 1.2 it follows that this system is a basis for T,(M, Ey).

Therefore, we may express the elements é™*!,...,é" linearly by
&,..., &™. So there exist reals af (4 =1,...,m and j = m+1, ..., n) such
that & = ai¢*. Then there exist functions o, g, ..., al, f% in ¥ and a
neighbourhood U of p open in R" such that for j = m+1,...,n we have

N
(4.3) FIMNT = (ale+ D olfl) | MNT.
e=1
Applying the isometry R">3 (u!,...,u") - p+u"&} we may assume
that » = (0,...,0) and ¢, = (J;y ..., O%), 6k =1,...,mn, as well as that
the hyperplane M, is of the form R™ X0 and the orthogonal complement
to M, passing through p takes the form 0 X R"~™. Therefore, equality (4.3)



is equivalent to
(4.4) w =F(u) for ue MNU,j=m+1,...,n,
where for any 4 = u*¢, € R® we set
N

(4.5) Fi(u) = alu'+ D al(w)Bh(w).

e=1

The functions F’ belong to E. Therefore, we have got the functions

Fi of class O such that, for any ¢ = t*¢, and » = w*e, in R,
(4.6) Fi(t)—F'(u) = Fi(¢, w)(t*—u*), Fi(u,w) = Fj(v),

where F, stands for the partial derivative of the function F’ with respect
to the k-th variable. From (4.5) and the equalities af(p) = 0 = p!(p) it
follows that for ;' = m+1,...,n we have

N
Fli.(p) = ) o} (9) B4(D) + a}(p) By () = O.

e=1

Let r > 0 be a number such that B(p,r) < U, let p,,, be continuous
with respect to its domain (Proposition 3.2), and

(4.7) det[8l —FlL(t,u);m+1<j,j<n] #0 for t,ueB(p,r).
Denote the inverse matrix of [ —F(f,u); m+1<j,j<n] by
(6] (¢, w); m+1 <3, < n].

Now, let us set f = p,,;, where p,,, has been defined at the beginning
of this section. Conditions (i)-(iii) follow directly from the definition of
the mapping p,» and Propositions 2.2 and 3.2. It is easy to check that
for every u of the domain of f we have

f(u) =uley+ ... +u™e,+ ™ (U)epyy+ ... +f"(w)e,
or, shortly, f(u) = w'e;+f/(u)e;. From (4.4) we obtain
(4.8) f(u) = Fi(ut, ..., w™, f**(u), ..., f*(u)) for e D,

where D, denotes the domain of f. Let ¢, u € D,. From (4.6) and (4.8)
we get

PO —F () = FiE, a) (¢ —o') + FLE, @) (f"(0) —f (), § =m+1,...,n,
‘where

(4.9)

(tl’ ooy T (D), ---:fn(t))’
('“’1’""umyfn+l(“)’"'yfn('“'))'

i
'c"t



264 W. WALISZEWSKI

This is equivalent to
(7 @) =" (w)(8], — F}. (3, w)) = Fi(E, @) (¢ —u),
whence

) —f(u) = F{(t, a)G;j'(i, @)t —uh), j=m+l,..,n

Setting Hi(t, w) = F} (¢, u)G).(t, w) for any ¢, e B(p,r), we have
the functions H3 of class C* on B(p, r) X B(p, r) such that

(4.10) F(t)—f(u) = Hi{, ) —v*) for t,ueD,,

where f and % are given by (4.9).

Let q € D, and let v be any direction of the set .D, at the point g¢.
For any pair of sequences t,, ?5, ... and %;, %,, ... of points in D, such that
U AUy h=1,2,..., 8 —>q, U >q, (& —u,)[t—u/"" >0 a8 b > oo,
from (4.10), because of the continuity of f, we obtain

f(th) —fj(uh) Hj(th h)

{tn —ual It ~ |

where § = (¢, ..., ", " (@), ..., (@), © = (v, ...,™, O, ..., 0). The
number Hj(G, §)o° does not depend on the choice of the sequences
t,, 1, ... and u,, U, ..., is the derivative of the function f/ at the point
¢ with respect to the direction v, and is denoted by J,f(q). Therefore, we
have the equalities

0f (q) = 113(!1’, cery qmrfm-l-l(Q)""’f”(Q))”i’ j=m+1,...,n,

> Hi(§, 0 as b > oo,

where for abbreviation we write H/(t) instead of Hi(t,t). Since H} are
of class C* on B(p, r), the derivatives of all orders exist at every point
of the domain of f with respect to all directions of this domain, which
completes the proof.

Let f: X - Y be a continuous mapping of the topological spaces.
This mapping is said to be locally open at the point p in X if for any neigh-
bourhood V of p there exists a neighbourhood U of p open in X, U < V
such that the image f(U) is open in Y.

THEOREM 4.2. For any subset M of R the following conditions are
equivalent:

(v) M is a regular m-dimensional hypersurface of class C* in R";

(vi) for any p € M the orthogonal projection w, of M, with topology
induced from R"™, onto the tangent hyperplane M, to the differential space
(M, E,,) is the locally open mapping at the point p.
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Proof. It is evident that (vi) follows from (v). To prove that (vi)
implies (v), take any p € M. According to Theorem 4.1 there exists a func-
tion f fulfilling conditions (i)-(iv). Then there exists a neighbourhood
U of p open in M and contained in B(p, r), where the set of values of f coin-
cides with MNB(p, r), and such that n,(U) is open in M. It is easy to
verify that ,(U) is contained in the domain of f and f (=,(U)) = MNV,,
where V, = B(p, r)Na};}(n,(U)). The set V, is open in R". According
to (iv) the mapping f is of class * on =,(U), and by (iii) it is regular on
this set, which completes the proof.

Theorem 4.1 is very useful in finding the tangent hyperplane. From
this theorem it follows, for example, that if ¢ is a real continuous function
on R without the derivative at any point, then the tangent hyperplane
M,, where M is the graph of ¢, coincides with R* at any point of M, while
the topological dimension of M is obviously equal to 1. Similarly, the number
dim M, —topdim, M, where topdim,M stands for the dimension of the
set M at the point p regarded together with topology induced from the
Cartesian space, is a positive integer in the case where M is the set of all
(z,y) e R* such that y(1+a*lny) = 0. Another example of the same
type is given for

M = {(z,0); s < 0}U{(z,2*);2> 0}, p =(0,0).

It seems remarkable that for this set the hyperplane Mz of all direc-
tions is 1-dimensional. The number dimM,, —dimM g can also be useful
in characterizing the singularity of a subset of R".
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