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1. The paper concerns the problem of imbeddability of some curves
(i.e., one-dimensional continua) in the Euclidean plane. We recall here
some earlier results and examples related to planability which are either
well-known theorems or — sometimes — some popular facts in this area,
that we need in our further applications to state some conditions of non-
planability of dendroids.

All spaces considered in this paper are metric. The Euclidean plane
is denoted by R®. A subset A of a space X is said to be planable if it is
imbeddable in the plane, i.e., if there is a homeomorphism %: 4 — h(A4)
< R’ It is easy to observe the following

PrOPOSITION 1. The property of being planable is hereditary, i.e.,
every subset of a planable space is planable.

In other words, we have

ProPOSITION 1. If a space X contains & mon-planable subspace Y,
then X is mon-planable.

Some statements which concern non-planability of some spaces
can be formulated by the use of the notion of accessibility. A point p is
said to be accessible from a set D provided that there exists an arc xp
lying in Du{p} (see [20], p. 111). The notion of accessibility is not a topo-
logical invariant, i.e., the accessibility of a point p € X « R? from R*\X
depends on the manner of lying of X in R?. It can be seen from the following
example. '

Let X be the cone over the set

{0, 0)}u{(2—1n,0): n=1,2, }U{(2n_—11 ,0): n=1,2, }

!

with the vertex at (0,1). Thus X is the so-called harmonic fan having
{(0,y): 0<y<1} as its limit segment. The point p = (0, 1/2) is, there-
fore, inaccessible from the set R\ X. But, if we consider the homeo-
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morphism h: X — h(X) c R* defined by

(#,9) fx>0,

h =
@ 9) (—z,y) if2z<o,

then we get the cone over the set {(0,0)}u{(1/n,0): » =1,2,...} with
the vertex at (0, 1) as h(X), and we see that p = h(p) is now accessible
from the set R*\ha(X).

Therefore, the following concept of the strong inaccessibility of points
in subsets in the Euclidean plane seems to be useful for investigations of
non-planable spaces. -

Definition 1. A point p € § = R? is said to be a strongly inaccessible
point of S provided that there is no homeomorphism

h: 8 - h(S) c R?

such that h(p) is accessible from the complement R*\ % (S) (see [5]).

For example, if G is the closure of the graph in polar coordinates
(0, #) of o = 1/8+ |sin(34/2)|%, where & € [r, oo), it is the union of a sim-
ple triod and a curve spiralling down on it. Each point of the triod is
a strongly inaccessible point of G (cf. [1], Example 1, p. 654).

PROPOSITION 2. Let a space X contain a planable subset S and an arc pq
such that pgnS = {p}. If p is a strongly inaccessible point of S, then X is
non-planable.

Indeed, if X is planable, then there is a homeomorphism
h: X - h(X) < R?,

and pgn8S = {p} implies h(pq)nh(8) = {h(p)}. Thus k(p) is an accessible
point of k(S) from R2\h(8S).

In the sequel, let 6 denote the Euclidean metric in the plane.

LeMMA 1. If p is not a strongly inaccessible point of a planable conti-
nuum X, then there exists a homeomorphism h: X — h(X) < R? such that
h(p) 18 accessible from the unbounded component of R*\h(X).

Proof. Since p is not a strongly inaccessible point of X, thus, accord-
ing to the definition, there is a homeomorphism

p: X > p(X) c B?

such that the point ¢(p) is accessible from R*\¢(X). Therefore, there
exists a point @ € B>\ ¢(X) with the property that the points ¢(p) and a
can be joined by an arc ¢(p)a such that

(p(@)aN\{p(p)})ne(X) = @.
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If a belongs to the unbounded component of R*\¢(X), then we put
h = ¢ and the proof is completed. In the opposite case, let

Q(a,¢) = {z e R*: 4(a, )< e},

where ¢ > 0 is such that Q(a, ¢) = R*\¢(X). Further, let ¢ be the first
point of the arc ¢(p)a, ordered from ¢(p) to a, lying in the boundary

C =Q(a,e)\Q(a,e) of Q(a,e), ie,
qeC and o¢(p)g =« R*\Q(a,c¢).

Consider the inversion y of the plane R? with respect to the circle C
(see, e.g., [9], p. 141), i.e.,
y: R*\{a} > R*\{a}.
According to the well-known properties of the inversion we have

'P(RZ\Q(a'y 3)) = Q(a, 3)\{“}
and y|C is the identity. Since
¢(X) = R*\Q(a,¢),
we have y(p(X)) < Q(a, &) and, therefore,
y(9) = g€ C = R*\Q(a, &) = R*\y(p(X)).

Observe that R*\Q(a, ¢), as a connected and unbounded set, must
be contained in the unbounded component K of R*\y(p(X)). Further,
the inversion y being a one-to-one continuous mapping, the image of the
arc ¢(p)q under y is an arc A = y(p(p)g) joining the points y(p(p)) and
p(g) and such that A\y(p(p))= K. Thus we have

Any(eX) = {v(e@)},

and to complete the proof it is enough to put » = y|¢(X).

PROPOSITION 3. Let a continuum X be the umion of two mon-degen-
erate planable continua X, and X, the intersection of which is a point p and
such that there are mon-degenerate arcs pq, = X, and pq, < X,. Then the
continuum X i8 non-planable if and only if p is a strongly inaccessible point
of either X, or X,.

Proof. Assume that p is a strongly inaccessible point of X, and let
P4, be an arc in X,. Thus X is non-planable by Proposition 2.

Assume now that the continuum X is non-planable and suppose that p
is not a strongly inaccessible point of both X, and X,. Thus, by Lemma 1,
there exist homeomorphisms k, and h,,

hy: Xy—hy(X,) € R® and  hy: X, — hy(X,) = R,
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for which the points h,(p) and h,(p) are accessible from the unbounded
components of R*\h,(X,) and R®*\h,(X,), respectively. We may assume,
without loss of generality, that the images &, (X,) and h,(X,) of continua X,
and X,, respectively, are disjoint and, moreover, that h,(X,) is contained
in the unbounded component of R?*\h,(X,) and, similarly, that k,(X,)
lies in the unbounded component of R*\h%,(X,). Therefore, there is an
arc in the plane R? which joins h,(p) with h,(p) and which lies, beside of
its end points, out of the union &, (X,)Uh,(X,):

B (D) ho ()N Ry (D), Ba(D)} = RN (hy(X,) Uby(X,)).
Consider the union
By (X1) Uy (P) hy(p) Uhy(Xs) < R

and the mapping ¢g: R? — g(R?) which shrinks the arc h, (p)h,(p) to a point
g(hi(p)) = g(hs(p)) and which is a homeomorphism out of this arc. It
follows that g(R?) is homeomorphic to the plane ([17], Theorem 22, p. 425;
cf. [14], § 61, IV, Theorem 8, p. 5333). Then the mapping

fi X > f(X) = g(R)
defined by
_ g (ki (2)) if xeX,,

f@) = g(ho(2)) if xeX,

is a homeomorphism imbedding X into the plane.
As an immediate consequence of Propositions 3 and 1’ we get

COROLLARY 1. If a continuum X contains the wunion of two mon-
degenerate planable continua X, and X, the intersection of which is a point p
that 18 a strongly imaccessible point of either X, or X, and such that there
are non-degenerate arcs pq, = X, and pq, < X,, then X 8 non-planable.

A continuum X is said to be triodic (see [18], p. 262) if it contains
three subcontinua A, B and C each of which does not contain any of the
others, and

AnB = BNn(C =CnA = AnBnC

is a continuum. In particular, the union of three ares pa, pb and pc each
pair of which, and all three of them, having only the point p in common,
is called a simple triod. The point p is called the top of the triod.

By a disk we mean any region D in the plane whose boundary D\ D
is a simple closed curve. '

PROPOSITION 4. Let a continuum X contain a planable subcontinuum S
and a simple triod paupbupc = 8. Let the arc pa be the topological limit
of a sequence of arcs pa, such that pa,n8 = {p} for every n =1,2, ...
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Assume that for every imbedding i of S into the plane R? there exists a disk D
in the plane such that

1° i(p) € D,

2° i({a, b, ¢}) = R*\D, and

3° if L denotes the component of i(pbupc)nD that contains the point
t(p) and if A denotes the component of D\ L that intersects the arc i(pa),
then the point i(p) 8 not accessible from A\i(8).

Then the continuum X is non-planable.

Proof. Suppose that X is planable. Thus there exists a homeomor-
phism h: X — h(X) < R? Putting + = h|S we see, by the hypothesis,
that there is a disk D in the plane satisfying conditions 1° 2° and 3°.
To simplify the notation we omit the imbedding ¢ in further considera-
tions, i.e., we write simply « in place of (x) for # € 8.

Let a simple closed curve C be the boundary of D. Since the point p
is in the bounded component of R*\C and the point « is in the unbounded
one, and since the arcs pa, have the arc pa as their limit, we see that for
almost all » the arcs pa, intersect C. Let a, be (for sufficiently large =)
the first point of the arc pa,, ordered from p to a,, which lies in C, and
let a’ be the similarly defined point of the are pa. Thus, by construction,
we have

paN\{a;} c D and pa'\{a'} cD

and, by the convergence condition, almost all points a, must lie in the
arc which is contained in C, has its end points at the end points of the arc L,
and which contains the point a’. Thus we have pa,nA # Q. Observe
that the union CUL is a #-curve (see [14], p. 328) and that the arc

L c pbupe = 8

separates D into two disks one of which is A. The arcs pa, have only the
point p in common with S, i.e., they cannot intersect the arc L out of p.
Hence, applying the theorem about the #-curve (see [14], § 61, II, The-
orem 2, p. 511), we conclude from pa,n4 # @ and from pa,\{a,} = D
that

pa,\{p} < A.

But this means, by pa,nS = {p}, that the point p is accessible from
ANS, contrary to 3°.

As another condition for the non-planability of a continuum, one
can use the well-known triodic theorem of Moore [18] which says that
cach uncountable collection of triodic continua lying in the plane contains
an uncountable subcollection every two elements of which have a point
in common. Thus, in particular, no uncountable collection of disjoint
triodic continua can exist in the plane. In other words, we have
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PROPOSITION 5. If a continuum X contains uncountably many disjoint
triodic subcontinua, then X is non-planable.

PROPOSITION 6. Let a continuum X contain a sequence of mutually
disjoint simple triods

T, =p,a,9 9,0,V p,0, (n=20,1,2,..),

where a,, b,,, ¢, are their end poinits and p,, 18 the top of T, with

(1) lima, = a,, limd,"=b,, lime, =¢,, limp, = p,,
n—00 n—o00 n—>00 n—>00
(2) Limpnan = PoQy, lepnb'n = p0b07 Limpncn = PoCo-

Then X is nmon-planable.

Proof. Suppose that X can be imbedded in the plane R?® under
a homeomorphism h: X — h(X) < R?% Neglecting the homeomorphism h
to simplify the notation, we will write 2 for h(x), i.e., we identify X with
its homeomorphic image in the plane.

Let C be a simple closed curve in R? such that

@by C = {ay, by}

and such that a,b,\{a,, b,} is contained in the bounded component of
R*\C. Thus CUa,b, is a #-curve and, therefore, its complement R*\ (C'uUa,b,)
has two bounded components D, and D, (see [14], § 61, II, The-
orem 2, p. 511). Since there are infinitely many arcs a,b,, we conclude
from

Lim an bn == a'o bo

n—o00

that infinitely many of them have common points with one of these
components, say D,, i.e.,

O, bm, "Dy # O
for some sequence of maturals m,. Let
@ € Do \{Do, @} and b, € Poby\{py, by} .
By (2) there are points
U, € Pra, O, \ {Pmy» Om,} and by, €Dy by \{Dp , by }

such that a;,,n and b;,,n are in D, for almost all n =1, 2,... Therefore,
the point p, is not accessible from

[o 0]
! ’
DO\ U amnbmnr
n=1
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whence, in particular, we conclude that p,c,nD, # @. Thus there exists
a point ¢, € Pycy\{Po, Co} such that

PoCo\{Po} = D;.
Therefore, it follows from (2) that for sufficiently large n there
are points
Ch€ PpC, With lim ¢, = ¢,

n—>00

In particular, we have
imeh, =
and we see that, for sufficiently large n, the points c;nn must be in D,.
But the points p,, are in D, by construction. Thus, for sufficiently large 4,
we have
pmnc':nn < DyvaybeVD,.

Applying the above-quoted theorem about the J-curve once more
we get p,, C, Nayb, # G, a contradiction.

2. For curves, the imbeddability in the plane R’ is equivalent to the
imbeddability in the two-sphere. It is well known that the problem of
a characterization of curves X which are non-planable is solved in the
case where X is locally connected. It was firstly done for local dendrites,
i.e., locally connected continua which contain only a finite number of
simple closed curves (see [14], § 51, VII, Theorem 4, p. 303). Namely,
in 1930, K. Kuratowski described two very simple graphs K, and K,,
called the primitive skew graphs (see [13], p. 272, or [14], p. 305, where
these graphs are 'pictured), and showed that a local dendrite is non-plan-
able if and only if it contains a homeomorphic image of either K, or K,
(see [13], Theorem A, p. 278; [14], § 51, VII, Theorem 7, p. 305). Moreover,
the graphs K, and K, are imbeddable in every surface except the spherical
surface (see [13], Theorem C, p. 282). In general, the problem was solved
in 1937 by S. Claytor who described two curves C, and C, (originally due
to Kuratowski; see [8], p. 631, where these curves are pictured) and
showed ([8], p. 631) that a locally connected continuum can be imbedded
in the two-sphere if and only if it contains no homeomorphic image of the
primitive skew graphs K, and K, or of the curves (, and C,. But the
problem of the planability of curves which are not locally connected is
still open, and it seems to be far from solving. Only certain partial results
are known (however, some of them are of great importance), e.g., each
arc-like continuum is planable but the tree-like one need not be (see [1],
Theorem 4 and Example 1, p. 654). In this paper we discuss some intro-
ductory properties of continua concerning this problem and we give
some conditions which are sufficient (but, in general, faz from being nec-
essary) for some kind of curves to be non-planable.

3 — Colloquium Mathematicum XXXVII.2
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3. Further parts of the paper deal mostly with dendroids, i.e., hered-
itarily unicoherent and arcwise connected continua. It is known that
every dendroid is hereditarily decomposable ([3], (47), p. 239), whence
it is a curve ([3], (48), p. 239) and, therefore, it can be imbedded in the
Menger universal curve ([16], p. 345-360), lying in the three-dimensional
cube. The methodical investigation of dendroids was initiated by Professor
B. Knaster at his Topology Seminar in Wroclaw about 1958. As early
as in 1959 he raised the problem (see [12]) to characterize dendroids which
can be imbedded in the plane RZ.

It is well known, on the one hand, that every dendrite (i.e., a locally
connected continuum containing no simple closed curve, or — in other
words — a locally connected dendroid; see [15], p. 301) is planable. This
follows not only from the Kuratowski characterization of skew local
dendrites but also from the fact that in the plane there exists a so-called
universal dendrite, i.e., a dendrite “which contains topologically every
other dendrite (see, e.g., [16], Chapter X, 6, p. 318-322, and ecf. [19],
p. 57, and [11], p. 553). On the other hand, it is known that not every
dendroid is planable. To see various reasons by which some dendroids
cannot be imbedded in R? we recall first some auxiliary notions.

A point p of an arcwise connected continuum X is called a point
of order n in the classical sense if p is a common end point of exactly n
arcs disjoint from one another beyond p and contained in X (we write
Ord, X = n; see [3], p. 230). In particular, a point p of X is called an
end point of X in the classical sense if Ord, X = 1, and it is called a ram-
ification point of X in the classical sense if Ord, X > 3. Henceforward,
the words ‘“in the classical sense” will be omitted. The set of all end points
of X in this sense will be denoted by E(X), and the set of all ramification
points of X — by R(X). A dendroid X is said to be a fan provided in X
there is only one ramification point r, called the top of X (see [4], p. 6). If
Ord,X = &, or Ord, X = w, the fan X is called countable. In other words,
the fan X is countable if and only if the set E (X) is countable (see [4], p. 14).

A rather narrow class of non-planable dendroids was firstly exhibited
by the first author in [3], p. 2561, with the use of the notion of a ramifi-
cation point. The result proved there can be formulated. as

THEOREM 1. If a dendroid X is homeomorphic to the set R(X) of all
ramification points of X, then X is non-planable.

In [3], p. 245-251, there was constructed an example of a dendroid
satisfying the hypothesis of Theorem 1.

A valuation of the Borel class of the sets E(X) in the case where X is a
planable dendroid can be used to indicate another reason of non-plan-
ability of dendroids. Namely, a Lelek’s result can be reformulated as follows
(see [15], § 6, Theorem, p. 307).
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THEOREM 2. If the set E(X) of all end points of a dendroid X is not
a @, ,-86t, then X is non-planable.

The valuation of the Borel class of sets K (X) in the case where X
is an arbitrary dendroid is unknown (see [15], p. 319). Moreover, we do
not know any example of a dendroid X satisfying the hypothesis of The-
orem 2. So the following problem seems to be open:

PrOBLEM 1. Does there exist a dendroid X the set F(X) of which
i8 not a G,,4-set? (P 1012)

We show now some examples of dendroids the non-planability of
which is a consequence of arguments used in propositions from Section 1.
A large number of dendroids can be shown to be non-planable using the
condition mentioned in Proposition 2. As an example one can take the
well-known Borsuk’s countable non-planable fan [2]. This fan contains
a simple triod T = paupbupc and three sequences of arcs converging
to the ares ab, bc and ac, respectively. The union of 7 and of the arcs
of the three sequences forms a planable set S with property that p is a strong-
ly inaccessible point of S. The same Borsuk fan serves as an example
of a fan whose non-planability follows from arguments mentioned in
Proposition 3 or Corollary 1. As an example of a dendroid the non-plan-
ability of which is a consequence of Proposition 4 consider the following-

Take a system of cylinder coordinates (g, ¢, k) in the three-space R*
and put

p =(0,9,0), q =(0,9,1),

1 1 2= , 1 4=

a, = Z:Oyoy bn= ;77707 ¢, = ?7?70’
1 1 2n 1 4rx

q, = —70’1 ’ Ty = _"7'_’1 ’ 8 = _7_71 .
n n 3 n’ 3

Let oy denote the straight-line segment with end points x and .
Put

00
X = pqupalupblupclu U (ananbnrnucnsn)'
n=1

It is easy to see by construction that X is a dendroid. Taking

S = pqupblupclu U (bnrnucnsn)
n=1

we see that § is planable and pgq, = pa,Va,q,, Whence pg,nS = {p}
for every n = 1, 2, ... Further, for every imbedding ¢ of § into the plane
there is a plane region D satisfying 1°, 2° and 3° of Proposition 4, e.g., such
one which is bounded by a simple closed curve composed of i(r,b,), ¢(b,p),
t(pec,), i(c,8,) and of an arc joining i(r,) with i(s,) in such a way that
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the arcs <(pq), ©(b.r,), i(c,8,) (n =2,3,...) without their end points
lie in D. Thus i(p) is inaccessible from D\ (8).

Examples of non-planable dendroids the mnon-planability of which
follows from Propositions 5 and 6 will be given in Section 4.

4. A dendroid X is called smooth if there exists a point p € X, named
an tnitial point of X, such that for every convergent sequence of points a,,
of X the condition
lima, = a

n—>00
implies that the sequence of arcs pa, is convergent and

Lim pa, = pa

n—-oo
(see [6], p. 298). A dendroid X is called semi-smooth if there exists a point
p € X such that whenever a, converges to a, then Ls pa, is an arc (see [6],

n—>00

Pp. 306). In particular, smooth fans were investigated in [4]. It is known
from [4], Theorem 9, p. 27, and [10], Corollary 4, p. 90, that every smooth
fan can be imbedded into the Cantor fan, whence we have (cf. [6], p. 306)

COROLLARY 2. Every smooth fan is planable.

The hypothesis that the dendroid is a fan is essential in this corollary:
there are examples of smooth non-planable dendroids, e.g., described in [6],
p. 306 and 307.

Another example of a smooth non-planable dendroid that contains
uncountably many disjoint triods (thus, the non-planability of which
follows from Proposition 5) can be obtained in the following way.

Let T be the simple triod composed of three ares pa, pb and pc with
the only common point p. Let C denote the Cantor discontinuum (the
Cantor ternary set). Consider a decomposition 2 of T x C, the only non-
degenerate element of which is the set {(a, y): y € C}. The decomposition
space X =T x C/92, i.e., the image of T x C under the quotient mapping
is obviously a dendroid which can be represented as the union of the
Cantor set of copies of T with all end points a € T identified to one point.

Observe that one can use the harmonic sequence

H=1{0,1,3}1%,..}

instead of the Cantor set C in the above construction to get a smooth
dendroid Y = T x H /% which is non-planable by Proposition 6.

Also, the hypothesis of smoothness is essential in Corollary 2: if we
replace it by the semi-smoothness, then the non-planability does not
follow, as it can be seen by an example of a semi-smooth non-planable
fan given in [6], p. 306. The non-planability of this example follows from
Proposition 2.
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Let o/ be a class of spaces and let 2 be a property. Call 2 finite (count-
able) in the class & provided there is a finite (countable) set # of members
of <7 such that a member of <« has the property 2 if and only if it contains
a homeomorphic copy of some member of &. For example, the results
of Kuratowski and of Claytor mentioned in Section 2 can be restated
as follows: the property of not being imbeddable in the 2-sphere is finite
in the class of local dendrites and in the class of locally connected conti-
nua. It is known that the same property is not finite in the class of dendroids
(see [5]) but the following problems are still open (see [5] and [6]).

PrOBLEM 2. Is the property of non-planability countable in the class
of dendroids? (P 1013)

PROBLEM 3. Is the property of non-planability finite in the classes of
1° smooth dendroids, 2° semi-smooth dendroids, 3° semi-smooth fans?
(P 1014)

5. It seems to be interesting to consider some relations between
planability and contractibility of dendroids. Recall that a space is called
contractible (in itself) if there exists a homotopy H: X x I — X, where I
denotes the unit segment of reals, such that H (-, 0) is the identity on X
and H(-,1) is a constant mapping (i.e., it maps X into a point); sce [14],
§ 54, VI, p. 374. Contractible dendroids were investigated, e.g., in [7],
but no characterization of them is known. Since the smoothness of den-
droids implies their contractibility (see [7], Corollary, p. 93), the examples
of smooth non-planable dendroids given in Section 4 show that contrac-
tibility of dendroids does not imply their planability. However, a question
ariges if this implication holds for some special kinds of dendroids, e.g.,
for fans. In other words, a question is if there exists a contractible non-
planar fan. It is our conjecture that this question has a positive answer,
which can be based on the following example.

Let t be the origin of the polar coordinate system in the plane. Put-
in the polar coordinates (g, ¢),

po=(1,0), p,=(1,2"""), g¢,=(27"3-270)

for n =1,2,... and let zy denote the straight-line segment with end,
points x and y. Write

F = tpOU L—Jl (tpnuann)

The continuum F is the so-called harmonic hooked fan (see [4], p. 31)
with the top ¢. It is known that F is contractible (ibidem). Let C denote,
as previously, the Cantor discontinuum and let 2 be a decomposition
of F' x C, the only non-degenerate element of which is the set {(t, y): y € C}.
The decomposition space X = (F x C)/2 is obviously a fan which can
be represented as the union of the Cantor set of copies of F with all tops
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t € F identified to one point. Extending the homotopy which contracts F
to t onto the whole X in a natural way, it is easy to verify that X is con-
tractible. The authors do not know, however, if this particular fan is
planable or not. (P 1015) And, which is perhaps more important, we have
no general criterion to solve this problem.
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