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0. Introduction. Let, on a separable real Hilbert space H, a linear
differential equation

) X0 = —AX@0)+/ ),
X0)=x, xeH,

be given where A is a sectorial operator in H with the associated analytic
semigroup G(t), t > 0. It is known [17] that the Holder-continuity of an
H-valued function f implies the space-time regularity (made precise later) of
a solution to- equation (1).

In this paper we are concerned with similar properties of a solution to
a linear stochastic differential equation

@ dX(t) = —AX(t)dt+dM(t),
) X0) =x, xeH.

We assume for the rest of the paper the following:

(a) —A generates an analytic semigroup G(t) on H;

(b) M is a continuous, H-valued, square-integrable martingale defined on
some probability space (2, #, P) with a given filtration (%), t > 0.

Assumption (b) will be relaxed only at the end of Section 3 where M is
allowed to be a cylindrical process. '

By a solution to equation (2) we mean the so-called mild solution defined
by the formula '

3) X@)= G(t)x+;'G(t—s)dM(s).
° .

It is well known that if a strong solution to (2) exists, then it is of the form
() (see [1]. . --

In order to introduce the notion of regularity let us recall the definition of
the scale of spaces H,, a > 0 (see [6]): H, is the domain of the operator 4%2,

H, = D(4?), -
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endowed with the norm
Ixll, = 1AY* x|, xeH,,

where A, = A+1If, and B is a positive real number which belongs to the
resolvent set of the generator —A. For the definitions and properties of
fractional powers of operators see, e.g., [15]. It will be. shown that to some
extent the same regularity results hold for solution (3) to equation (2) as for the
deterministic equation (1). Namely, it will be shown (with some additional
assumptions) that the mild solution (3) is Holder-continuous as a process
taking values in the spaces H,. Results of this type can be interesting for
themselves. They also give a better understanding of the more interesting
nonlinear stochastic equations of the semilinear type:

dX () = [ AX )+ (X (9)] de+dM(p),

where a nonlinear function f is not defined on the whole space H. Such
equations are considered in [6]-[8]. Since the martingale M can be a white
noise process in some spaces H,, the regularity results for the process (3) are of
some importance for developing stochastic differential equations with white
noise perturbation. Equation (2) does not make sense in H, but it can be solved
in H and the solution is a “good” stochastic process in H, (see [11]).

The problem of regularity of a mild solution to (2) arouse some interest
recently. The continuity of (3) in H for the semigroups of contractions was
proved by Kotelenez [9] and Ichikawa [7]. A more general result of this type
can be found in the recent work of Da Prato et al. [3]. For analytic
semigroups, the regularity of a mild solution as a process in H, was
investigated by Kotelenez [11], Ichikawa [7] and also in [3]. Similar problems
were considered by Da Prato (e.g., in [2]). Linear stochastic equations with
white noise perturbations were treated in [4] and [12].

1. Auxiliary results. The following lemma is a generalization of a result
presented in [1]:
LeEMMA 1. Let H, G, K be separable Hilbert spaces, F € A*(H, G, M). Let
U be a closed operator defined on the domain D(U) < G,
U: DU)»K and’ UFeA*(H, K, M)

(and thus the composition UFQ}}*> makes sense). Then
t - t t
[FdMeD(U) and UdeM =IUFdM.
0 0 0

Moreover, F € A*(H, D, M), where D = D(U) is endowed with the graph norm.
Remark. For all the notation and facts concerning stochastic integrals in
a Hilbert space see [13].
For the proof of this lemma we need a selection-type result proved by
Zabczyk (unpublished).
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LEMMA 2. Let (£2, #) be a given measurable space and let X denote the
space of all nonnegative (and thus selfadjoint), compact operators on a separable
Hilbert space H. Assume that </: Q— X is a measurable transformation in the
sense that, for arbitrary x, ye H, w - {f(w)x, y) is a real-valued measurable
transformation. Then there exist a sequence of functions A,(®w) = A,(w) = ... 20
and a sequence x,(w), x,(w), ... of vectors such that

1° x;@l <1,i=1,2,..., we;

2 if W) #0, then |x (@) = L;

ifi#jand A(w)>0, A)w) >0, then

(x@), x;(@)> = 0;

4° the functions A, and x; are measurable for arbitrary i,
5° for arbitrary xeH and we£,

A (@)x = Y, A(w){x, x(0)) x,()

i=1

and

| (@) x| = Z A @)Kx, x (@)

Proof of Lemma 1. Let us notice that the lemma is obvious if U is
a bounded operator. To prove the general case we use Lemma 2. The process
Q. associated with the martingale M can be decomposed into the form

Qux= ) 4<{x e)e, xefl,
i=1

where A,, e; are predictable processes with properties 1°-5° of Lemma 2 and the
sum is taken, for every w, over those i’s for which 4,(s, @) > 0. Now let us define
the process R,(s, w) as the orthogonal projection on the linear span of those
e;(s, w) for which 4;(s, w) > 0, i < n. Then, for every xe H, R, x is a predictable
process. Let F, = FR,; then F,(s, w) is a bounded operator and F,x is
a predictable process for every xe H. We have also

IFall 42 < IFll 42 < 00,

which yields F,e A%(H, G, M). Obviously, we have

I(F,—F)Q"?|ls = Z/HI(F —Fle? = i).,llFe,‘Il’.

k=n+1

In addition, since Q}/*> and R, commute, we get

I(F,—F)Q'?||lgs = |IFQ'*(R,—Dllgs < |FQ"?| gs.
Thus, by the dominated convergence theorem, we obtain
|\F,—F|l ,2—0.



330 B. GOLDYS

By the same reasoning, UF, e A%2(H, K, M), and in this space UF,— UF. These
facts imply that F,e A%2(H, D, M) and ' '

F,»F in A%(H, D, M).
Since U is bounded on D, we get
U[F,dM = [UF,dM.

Now by the above results and the closedness of U the assertion follows.

The next lemma is a simple consequence of a more general result given in
[14], but we give here a direct proof based on the It6 lemma.

LeMMA 3. Let Fe A*(H, K, M) and
t
N(t) = [ F(s)dM(s).
0

Then for every p > 1 there exists C,> 0 such that
E|N@®)I*® < C,E(N)P

and C, is a deterministic constant.
Proof. Let ¢: K—R be of the form

é(x) = |lx||?*.
Then we have
I¢” Gl < A, llx]|>2~2.
Then the It6 lemma (see [13]) yields

IN@)I?? = g ¢'(N(S))dM (S)+%£ ¢"(N(s))d<<{M>>,,
and thereby “

E|N@®|** <3E (I) tr[¢” (N(s)) @n(s)] <N,

<3E[CN),sup||¢”(N($))|[]] <$4,E(sup ING)I??~2(ND,)

s<t s<t
< $4,(EIN@)|??) ~P(EXNYD)P.
Now it is easy to see that
E[N@®)I?? <3 4, E{N)!.

2. Moments of a mild solution. In this part of the paper some results on the
existence of the moments of the mild solution (3) are presented. We begin with
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THEOREM 1. Let X be a mild solution to equation (2), X(0) = 0. If for some
«=>0and t >0

4

() ‘<I:£(_)a<0005

then X (t)e H, a.s. Moreover, if for some p > 1
I OAS

(5) E(iw) < 00,

then E || X (1)||2? < co.

For the proof of this theorem and the next ones we need some facts from
the theory of analytic semigroups. We collect them in

LEMMA 4 ([15]). Let — A generate an analytic semigroup G(t), t = 0, on
a Banach space B and let zero belong ‘to the resolvent set of A. Then
(1) for every t >0 and o >0,

G(t)B = D(A%;

(2) for every xe D(A%), =0

G()A°x = A*°G(t) x;
(3) for every t >0 and a >0, the operator A*G(t) is bounded and

| 4G < Lyt~
4) for 0<a <1 and xeD(A%,
IG@) x—x| < D,t* || 4°x||, te<0, T);
(5) for >0, B=0 and xeD(A**?),
APx e D(A%).

In all the proofs that follow it is assumed that zero belongs to the resolvent -
set of A4; the general case can be deduced easily by shifting the generator — A4
and simultaneous change of the martingale.

Proof of Theorem 1. We begin with the second part of the theorem, so
assume that (5) is fulfilled. By means of Lemmas 1, 3 and 4 we get

EIX (127 = E|| [ A“2G(t—5)dM(9)|?®
0

< C,Eq 142 G(t—3) QM (s)l Fis A<M,

(e
o
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which proves the second part of the theorem. If
cd{M)
E } < 00,
, { (t—ys)

then X (t)e H,. If only (4) is fulfilled, then define the sequence of stopping times
(T)):

.
inf{t < T;su j'd,<M>: > n} if such a t exists,

T = v<t o' —S)

n t
T ifjd<M>’<nforallt<T.

o (t—s)

T’s are Markov times, T, < T,;; and, for almost every w, T,(w) = T for
n sufficiently large. Let

M(t)=M@tAT) and X"(t)= ;'G(t—s)dM"(s).
0

This definition implies that E|X"(¢)||2 < oo, and thus X"(t)e H,. Since
X(@)= X"(t) for t < T,, we obtain the desired result.

Now we consider the case where A is selfadjoint. In this case Lemma 2 and
the spectral theorem ([16], p. 227) yield

©) EIX()|2 = E [ A(f e~ 22~ 9d(M,) u(dd),
(1] 0

whel_'e

™ pdd) = Y 4<PEd) ey &),

k=1

P(dJ) is the spectral measure of the operator A, and A4, = A (s, w), ¢ = e, (s, w)
arise from the predictable decomposition of the operator Q,, given by Lemma
1. Formula (6) allows us to construct some counterexamples and to obtain
more exact results in the selfadjoint case.

ExAMPLE. It can be shown that for every a > 0 one can find a martingale
M and a selfadjoint 4 such that E || X (¢)||2 = oo. It is enough to consider the
martingale : '

M(t) = e, [ f(s)dW(s),
0

where e, is a fixed vector, |le,|| =1, Wis the Wiener process on H, and

_fto—9)7F  for s <t,,
J) = {1 for s > t,,

where 0 <t, < T, 28 < 1. Then
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p(dd) = (P(dA)e,, e,

and

EIX(to)]2 = H"”” *(”f’s 26~ ds) u(d) =

-

provided that ¢+ 28 > 1 and the operator A4 is properly chosen. Since X (t) is
a Gaussian process, we see also that X(t,) is not a random variable in H,.

It can be shown that for some cases condition (5) is also necessary for the
finiteness of the second moment of the process X.

PROPOSITION. Assume that the operator Q,, is independent of (s, w). If for
every selfadjoint semigroup G(t)

E|IX(@®))2 < o,
then

L d(MD,
Bl =

< o

For the proof we will need the following

LEMMA 5. Let (e) be a CONS in a Hilbert space H and let the sequence (4,)
such that

Al'=1

A

>0,

™Ms

1

be given. Then for every probability measure on R absolutely continuous

with respect to the Lebesgue measure there exists a selfadjoint operator A such
that

wah) = 3 L (e, e,

where P(dA) is the spectral decomposition of the operator A.

The proof of this lemma follows easily from the spectral theorem (see
[16]).

Proof of the Proposition. By assumptlon we have

@

| l‘EIe'“““"d(M),u(dl) < ©
)

0

for every selfadjoint positive 4, and thus, by the above lemma, for every
probability measure u on <0, o) absolutely continuous with respect to the
Lebesgue measure. Thereby the functional T defined by

T(g) = cj? [E j[)."e'““"’d(M),] g(A)di
o o



334 _ B. GOLDYS

is finite for every g = 0 such that
fg(hdi=1.
0
This implies that T is finite, and thus continuous on L!(0, ). So we get
t
supE [ A2e™24¢79d (M), < 0.
i20 ©
It can be easily shown that the function

G(A) = Eii‘e'“‘“‘"d(M)s
0

is differentiable for A > 0 and one can differentiate the integrand. Hence

sup G(1) = (i)aE}d<M>* <,

120 2e o (t—s)

which completes the proof.

Remark. If M is a Wiener process, then the assumptions of Theorem 1
are fulfilled for every a, 0 < a < 1, and every p > 1. Formula (6) yields in
addition that E || X (¢)||? < o0, and thus X (t)e D(4'/?) for 0 < t < T. Properties
of the solution X in D(A4'/?) for A selfadjoint were recently investigated more
thoroughly in [3]. For «a > 1 the generator — A4 can be chosen such that
E[X(®)|2 = . .

3. Regularity of a mild solution. We will prove here that the mild solution
to equation (2) is Hoélder-continuous in the spaces H,.
THEOREM 2. Assume that the martingale M fulfills the condition

d{M>, < Q(s)ds,

where Q is a real progressively measurable process such that for some p > 1

T
8) [QP(s)ds < o0 as.

0
Then for every a€<{0, 1— l/p) the solution X (0) =0 to equation (2) is Hol-
der-continuous in H, with any exponent a such that

a < (1—a)/2—1/2p).

Remark. Assumption (8) implies that the process (M) is Holder-
continuous, amd thus, by [10], so is the martingale M. For such martingales
a better result was obtained in [3]. If the martingale M is a Wiener process,
then we obtain the same result as in [3].

Proof. We assume, as in the proof of Theorem 1, that zero belongs to the
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resolvent set of the operator A. The proof is by the Kolmogorov theorem [5].
Let us take 0 <t¢, <t, < T Assume first that, for every n > 1,

T

® E(f QP(s)ds)* < .

(V]
Then, by Lemma 1,
E[ X (t;)— X (¢)12"

=E| ‘j AY2G(t,—s) dM(s)—'f AY2G(t, —s)dM(s)|>"
0 0
<2 1E| j A2(G(t, —5)— G(t, —5)) AM(s)| >
0

151
+2*71E| fA"’G(t,—s)dM(s)ll".
n
Let us consider the first term. By Lemmas 3 and 4 we get

E| ‘f A“"Z(G(t2 —5)—G(t,—9)) dM(s)||*
-0

< CLE({ 14%%(G(t; ~5)= G(t, ~9) Qi hs d MDY

ty o©

< CE(f X 147*(G(t,—t,)—1) G(t, —s) Qif* e, 2d{ M) )

0k=1

< CD(t— 1,y E([ 3 |4P*92G(t, — ) QL ey I2d (M)

Ok=1

< C,DL(t,—t,)"**2PE ('f _d(_)\l),_)",

o(ty—sy*?

where D = D% .5, L= L2%.,, and (¢,) is an orthonormal base in H. By the
Holder inequality,

for 1/g =1—1/p, and the last expression is finite if § is such that
a+2f < 1-1/p.

The second term can be estimated similarly:

E| ?A”’G(tz—s) dM(s)|** < C,E(? 1A%2G(t, — )| 2d{M),)

12 — Colloquium Mathematicum LVIIL2
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s C’IL/E(I Q(S)

131 (tz —s)

) .1 j [ 0r(s)dsyre f 620 masp

1 \e
— aq) (tz - tl)u 'M)"/Q,

where L' = L2,. These inequalities taken together yield
E[1X ()~ X(¢,)]%" < By (t,— 1,274 By (t, — £,/ ~* 40,

From the Kolmogorov theorem it follows that X is Holder-continuous in H,
with an arbitrary exponent smaller than

(1-a)/2—1/2p)—1/(2n)
and, in fact, since n can be taken arbitrarily large, a can be smaller than
(1—a)/2—1/2p).

Thus the theorem is proved when (9) is satisfied. The general case can be
reduced to the previous one. Let us define a sequence of stopping times

< C,,L’E(; Q*(s)ds "’(l
0

t
inf{t < T; [QP(s)ds >n} if such a ¢t exists,
1; = ° T
T if {Q(s)ds <n.
o

Since the process Q is progressively measurable, we have
(T,<t}e

and, by (8), for almost every w, T,(w) = T for n sufficiently large.
Now, let

M"t)=M(tAT) and X"(t)= iG(t—s)dM"(s).
0

Then, by the first part of the proof, the processes X" are Holder-continuous for
all n with an arbitrary exponent smaller than (1—a)/2—1/(2p). Since

X101,y = X" 10,1,

we get the required property.

A similar theorem can be proved in a more general situation. Namely,
assume now that M is a weakly continuous 2-cylindrical martingale with finite
quadratic variation (see [13]). Under the above assumptions there exists a finite
quadratic Doléans measure u,, with bounded variation |u, . Assume also that
the semigroup G(t) has the following radonifying property:

(Iye(0, 1)) 4772 is a Hilbert-Schmidt operator.
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Then it can be shown (see [13]) that the meaning can be given to the
stochastic integral

(10) X() = [ Gt—s)dM(s)
0

and it is a well-defined stochastic process. For this process the following
generalization of Theorem 2 can be proved:

THEOREM 2. Assume that the variation measure |u,,| of the quadratic

Doléans measure p,, is absolutely continuous with respect to Lebesgue measure
and

dluyl < Q(s)ds a.s.,

where Q is a real progressively measurable process such that

T

[QP(s)ds < 0 as. for some p> 1.
0

Then for every a€{0,1—1/p—7y) the process X defined by (10) is Hol-
der-continuous in H, with arbitrary exponent a such that
1— 1
<1-@+y)

2 2p

The proof is similar to the proof of Theorem 2.

Remark. If the cylindrical martingale M is a cylindrical Wiener process,
then the assumptions of Theorem 2’ are obviously fulfilled for every p > 1 and
we obtain the same result as in [4].-In the general case our assumptions are
weaker than those of [12] and the results obtained are stronger.
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