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1. Introduction. Several years ago, Hartman and Ryll-Nardzewski
([4], Problem 711) asked whether there exists a continuous measure u
on the circle group T such that, for some ¢ > 0, {n: |[uz(n)| > &} = E(u, &)
is not a Sidon set. An affirmative answer was first provided by Kaufman [7].
Kaufman used an elegant category argument to produce a class of
examples. Later, the present author showed in [3] that if 4 were concen-
trated on a Kronecker set (see [9] for a definition), then E(u, ¢) contained
arbitrarily long arithmetic progressions for all 0 < e < ||u|l. A different
class of examples was provided by Ramirez [8] who showed that Riesz
products x had the property that E(u, ¢) was not a Sidon set for 0 < ¢
< limsup |z (n)®>. Izuchi studies in [5] the class & of measures u
on an LCA group G such that E(u, ¢) is a Sidon set for all ¢ > 0. He shows,
in particular, that & is an L-ideal [12] of measures, and that & contains
(for compact @, of course) the measures M,(G) such that g vanishes at
infinity on the dual I’ of G.

This note improves the method of [3] to obtain the observation
of [8]: E(u,¢) contains arbitrarily “large squares” (see below) if 4 does
not vanish at infinity on I. An (obvious modification of the) argument
of Salinger and Varopoulos ([10], proof of Theorem 3) shows that if E(x, ¢)
contains arbitrarily large squares, then F(u, ) is a set of analyticity,
and so is not a Sidon set. (That E(u, ¢) is not Sidon also follows from [6],
p. 54.) Thus, the class & of measures studied in [5] coincides with M (@)
for compact G. The result of this note may also be considered as a partial
converse to Drury’s theorem [2]. For another related result, see Blei [1].
i4 We now define our terms and state our theorems.

Definition. An n-square in the LCA group I'is a set of the form A B,
where A, B are subsets of I' of cardinality n. A set X <= I" contains arbi-
trarily large squares if X contains an n-square for n = 1, 2, ... (The reader
will have noted that I" is written as a multiplicative group. This (unusual)
convention will simplify the notation later on.)
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The reader should be warned that an n-square may not have cardi-
nality n% However, Salinger and Varopoulos [10] show that if X con-
tains arbitrarily large squares, then X contains n-squares which do have n?
elements for n =1, 2,...

For a regular Borel measure x4 on the LCA group G (with dual I')
and ¢ > 0, we define E(u, ¢) by

(1) E(u,e) = {yel: |u(y)| > ¢},
where u denotes the Fourier-Stieltjes fransform of u.
In this note we prove /

THEOREM 1. Let G be a non-discrete LCA group with dual I'. Let u
be a regular Borel measure on G such that the Fourier-Stieltjes transform u
of u does not vanish at infinity on I'. Then there exists ¢ > 0 such that

E(u, &) = {yel: |u(y)| > &

contarns arbitrarily large squares.

CoROLLARY 1. If G, I, u and ¢ satisfy the hypotheses and conclusion
of Theorem 1, then E(u, ¢) is a set of analyticity.

COROLLARY 2. Let G be an infinite LCA group with dual I'. Let u be a
regular Borel measure on Q. If E(u, ¢) s a Sidon set for all ¢ > 0, then u
vanishes at infinity on I

2. Proofs. Corollary 2 follows at once from Corollary 1, and Corollary 1
follows from (the proof of) Theorem 3 of [10].
We now actually prove a stronger result than Theorem 1:

THEOREM 1'. Let G and u satisfy the hypotheses of Theorem 1. Let
m=2 and n > 1. Then there exists ¢ > 0 such that for each m > 1 there
ewist sets A,,..., A,, < I', each having cardinality n, such that

A, A,...A, < E(u,c¢).

The method of [10] shows that A4,, 4,,..., A,, may be chosen so
that A, A,... 4,, has cardinality »™. .

For the proof of the theorem, we use the generalized character notions
of Sreider [11]. The reader might consult Taylor [12] for many results
about generalized characters. Finally, let us point out again that we write I
as a multiplicative group in the proof below.

Fix m > 1. We have several steps.

(A) We may assume that I' is discrete, since u(y) # 0 and I' not
discrete implies that, for some neighborhoods (infinite sets in particular)
U, V of 0 contained in I,

E(u,e)=2 U-V-y for some ¢> 0.
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(B) We may assume that G is metrizable. Indeed, let {y;};° be an
infinite subset of I'" such that limsup Ifz(y,-)] # 0. Let A4 be the subgroup
of I' generated by {y;}i°.

It will be sufficient to find our sets 4,,..., 4,, < 4. A moment’s
thought will convince the reader that we may therefore assume I' = A.

(C) Let {y;}i° be as in (B). We may assume (G being metrizable)
that limy; = f exists in L®(u), the limit being weak-*, of course. Then
f #0 a.e. du, since

[fau =1lim [y;du + 0.

Therefore, f™ (pointwise product in L*®(ux)) is not identically zero
a.e. du, so the measure defined by g — [gf™du (9¢C(@)) is not identically
zero. Therefore, there exists yy eI’ such that

f " vedu #+ 0.
We define ¢ by

(2) Yol

(D ) Fix n > 1. Since f is the weak-* limit of {yj}, there exist distinct
01,19 <+ Ql,ne{yj}l such that

@ |farnad=(5) | [rra] a<i<m.

(E) We now induct. Suppose that distinct g;;,..., 0;,¢{y;}i° have
been found for I =1,2,...,k—1 < m such that

ffm'}’od.“ly
where 1 <j(1),...,j(l)<n, and 1 <I<k—1.
We now find gg,, ..., 0xn- Since limy; = f weak-* in L®(u), there
exist distinet gy, ..., Ok ne{ys}i° such that

1 lm
(4) ‘f@l,j(u Qt,j(z)fm—l%d#’ > (E)

|f(’l.f(l) .- Qk,j(k)fm—kyo dy‘

1/m
( ) If@l () 000 Qk—1,j(k— l)f

Now (4) (with I = k—1) and (5) yield (4) with ! = k. This completes
the induction, i.e., (4) now holds for 1 <j(1),...,j(m)<n (and m = 1).
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By the choice (formula (2)) of ¢ we see that (4) (for I = m) implies

(6) lf@l,ju) ser Om,j(m) Yod,“| >e (1<j(d),...,j(m)<n).
Setting

4, = {91,17 ceey Ql,n} 1<li<m) and 4, = {Qm,l'}’o, ceey Qm,n'}'o}7

we see that A;4,... A,, < E(u, ¢) as required. This completes the proof
of Theorem 1'.

3. Remarks.

(1) It is easy to see, using Riesz products, for example, that there
‘s no necessary relationship between m, ¢ and limsup |u(y)|.

(ii) That the A; can be chosen so that 4,4, ... A,, has cardinality n™
cs simply done in our situation. Indeed, assume that 4,4,... 4,_;, has
jiardinality 2! (1 < k < m). Since limy; = f weak-*, there is a J such
that j>J implies (5) whenever g u) =9; (and A; = {0;1, -+ 0i,n}
for 1 <% < k). We choose g,, = y;, j > J arbitrarily. Then there must
exist, in the infinite set {y;: < > j}, a g, = y; such that

[4,4;... 4;_{ox }1NA A, ... Ay {0k} = 9.

A simple induction now shows that 4,4, ... 4,, may be chosen with
cardinality »™.

The author is indebted to Professor Carruth McGehee who, by pa-
tiently listening to an explanation of Theorem 1, led the author to a simpler
proof.
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