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APrellmmanes Let P be a probability measure on the real line R and
let P be the characteristic function of P, i.e. the Fourier transform of P:

P@) = fw ¢ P(dw).

For every s € R we shall denote by 7, the mapping T,» = sz ( € R).
Further, T,P will denote the measure defined by the formula T,P(E)
= P(T;*(E)) for all Borel subsets E of R. The decomposability semigroup
D(P) corresponding to P consists of all real numbers 8 for which there
exists a probability measure P, such that P = T,P*P,. The semigroup
operation is simply the multiplication of numbers. The concept of the
decomposability semigroup associated with probability measures has
been introduced by Urbanik in [4]. It has been also proved there that
gome probability properties of measures correspond to algebraic and
topological properties of their decomposability semigroups.

It is evident that s e D(P) if and only if there exists a probability
meagure P, such that P(t) = P(st)P,(t) (t € R). It is well known that
P i3 non-degenerate if and only if D(P) is compact (see [4], Theorem 1).
In other words, for a non-degenerate P, D(P) is a compact subsemigroup
of the multiplicative semigroup [ —1, 1]. Further, it is clear that always
0 € D(P) and 1 € D(P). Urbanik raised the problem whether this condi-
tion characterizes decomposability semigroups among compact ones. It
is eagy to prove that —1 € D(P) if and only if P is a translation of
a symmetric probability measure. The theory of self-decomposable prob-
ability measures affords important examples of decomposability semi-
groups. Namely, Lévy’s characterization of non-degenerate self-decompo-
sable laws P i8 equivalent to the inclusion [0, 1] = D(P) (see [2], Sec-
tion 23.3). Hence, in particular, we get the following statement: a non-
degenerate probability measure P is a translation of a symmetric self-
decomposable one if and only if D(P) =[—1,1].



348 T. NIEDBALSKA-RAJBA

Some non-trivial examples of decomposability semigroups for prob-
ability measures have been given in [3] and [6]. Let 8 be a symmetric
subsemigroup of [ —1, 1] containing both elements 0 and 1 and satisfying

the condition
2 83 < o0,
8eS

Urbanik proved in [5] that for every number ¢ from the interval
[—1, 0] there exists a probability measure P such that S Nn[g,1] = D(P).
Even on the real line the problem of characterization of those semigroups
which are decomposability semigroups D(P) for probability measures
ig still open. We show in Section 2 that the set of decomposability semi-
groups D(P) corresponding to the non-degenerate measures P is “dense”
in the set of all compact subsemigroups of [ —1, 1] containing both ele-
ments 0 and 1.

Now we define some subsemigroups of the decomposability semi-
group D(P). The decomposability semigroup D'Y(P) (D*¢(P)) corre-
sponding to the infinitely divisible (self-decomposable) measure P consists

" of all numbers s for which there exists an infinitely divisible (self-decom-
posable) measure P, such that P = T,P»P,. The essential topological
and algebraic properties of the semigroups D'¢(P) and D*(P) are the same
a8 those of D(P).

Urbanik proved in [5] that for a stable measure P we have the equality
D(P) = D'4(P) = D*(P). It is easy. to give an example of the self-decom-
posable measure P for which D'%(P) # D*(P). We prove in Section 1
that there exists an infinitely divisible measure P for which D(P) # D'¢(P).
In Sections 1 and 3 we give a characterization of decomposability semi-
groups D'%(P) and D%(P).

1. The decomposability semigroup D'Y(P). Adopting the notation
z
[ owaN(@w) (0<o< o)
A
for the sum of two Stieltjes integrals

-0 z

[ pwaN@w)+ [ (u)dN(u)

-z +0

we can write down the well-known necessary and sufficient condition
for a function f to be the characteristic function of an infinitely divisible
measure P in the following form (see, e.g., [2]):

1t
1+ u?

logf (1) = Mit—- + ) i ' (e“"—1- )_aN(u),
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where M e R, @ e R*, N(u) = N,(u) for <0 and N(u) = N,(u) for
u > 0, N, and N, being non-decreasing functions such that

a
[*wdN(u)< o, 0<a< oo,
-G

The function N (u) (» € (— o0, 0)U(0, o0)) i8 called a speciral function.
The function N generates the measure » on (— o0, 0)U(0, c0) by the
formula »((a, b]) = N(b+)—N(a+)(a<b, 0¢(a,b]). The measure » is
called a spectral measure.

It is evident that s e D'¢(P) if and only if there exists an infinitely
divigible measure P, such that P(t)/P(st) (teR) is the characteristic
function of P,. Thus, if 0 < s < 1, then s € D'¢(P) if and only if the func-
tions N{(u) = N,(u)—N,(u/s) for u <0 and Nj(u) = Ng(u)—Ng(u/s)
for 4 > 0 are non-decreaging. If —1 < 8 < 0, then s € D'4(P) if and only if
the functions N§{(u) = Nl(u)—l-Nz(u/s) for <0 and Nj(u) = Ny(u)+
+ N,(u/8) for v > 0 are non-decreasing. It is clear that if N, = const
and N, # const, then (—1, 0)n D'¢(P) = @.

THEOREM 1.1. There exists am imfinitely divisible measure such that
D'Y(P) = D(P).

Proof. Let G(u) = 2u (» € [1/2,1]), B > 0. There exists a number a
from a certain interval I < [1/2,1] (see [1], p. 1567) such that @,(a)—
—@,(a—h) > ¢h, where 0 < h < h®, @ (w) = G(u,w), 1 > 0, u, € [, 1]
(0<b<1),¢>0. If we put

k
E ={3¢T:n =2,3,...;k = 2”_1+17 ey 2" =15 (K, 2%) = 1},

then I NE is dense in I. Since G,(a)—G,(a—h) = 2u,h, we may choose
the number a from F, i.e. there exist integers ¥ and » such that (%, 2") = 1
and a = k/2". ) '

Now, there exists a number 8 > 0 such that

g:(t) = exp (—Bir+ [ (6" —1)dG(u) —s(e"" —1))

. 12
is a characteristic function (see [1], p. 130 and 161). Since exp(s (¢ —1))
is also a characteristic function, the function ¢(¢{) given by the formula

g(t) = ga(t)exp(s(e"” —1))
is the characteristic function of a certain measure Q. We write g(¢) in the
form
it

14 u?

g(t) = exp (Ait—Bt3+ f (e““—l— )dN,(u))’
+0
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where
Ng(u) = — x0,2m— (1 '!‘8) Xamnae + (2% —2) yapy (4> 0).

Since N, is not non-decreasing, @ is not infinitely divisible.
Let f be a function defined by the formula

M#QW%J

The function f is the characteristic function of a certain infinitely
divisible measure P for which the corresponding spectral function M
is given by the formula

My(u) = 3 Ny(2*u)

k=0
n—-2 ‘oo

== Z (2% u + ks) A2k +1,12k) + 2 (2"‘“% +(n— 1)8) Auak+1,12%)
k=0 k=n—1

(u>0),
M, =0 (u<0).

It is evident that 1/2 € D(P) (P, = Q). Since @ is not infinitely
divisible, 1/2 ¢ D'¢(P). This completes the proof.

Let B denote the set of all infinitely divisible measures P for which
the corresponding spectral measure » has an atom (in other words, the
corresponding spectral function N is non-continuous). Now we give a
characterization of the decomposability semigroups D'¢(P) for which the
corresponding infinitely divisible measure P belongs to B.

THEOREM 1.2. Let S c[—1,1] be a compact semigroup containing
0 and 1. Then there exists a measure P € B such that D'4(P) = 8 if and
only if

(1.1) D) st < oo.
Proof. Necessity. Assume that a measure P with the spectral

measure » belongs to B and D'¢(P) = 8. We shall use the following obvious
inequalities:

(1.2) v({w}) = Tor({s2}) (2 #0,8€[—1,1]),
(1.3) ‘ Tor({#z}) <»({#}) (v #0,8eD'P)).
If s € D'Y(P) (s +# 0) and »({z}) > 0, then by (1.2) and (1.3) we have
v({s#}) >0 and w({z}) < v({s2}),"
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and hence

0o > f‘ uv(du) > 2 (sx)%v({sx}) > w’v({w})z 82,

8esS 8seS
Thus (1.1) holds.

Sufficiency. Let us suppose that (1.1) holds. For each point x
(¢ € R) we shall denote by 4, the probability measure concentrated at
the point 2. Let P be an infinitely divisible measure for which the corre-
sponding spectral measure » is equal to > J,. We show that D'4(P) = 8.

8eS\ {0}

It is evident that if —1 e §, then —1 € D'(P). If 8, € 8 and 0 < |8,
<1, then 3,8 =« 8 and P, is an infinitely divisible measure with the
spectral measure )

Voo = 2 O,
8€(8\8oS) -

Thus § < D'9(P).

Conversely, if s € D'%(P), then, by (1.2) and (1.3), »({8}) > »({1}).
Since »({1}) >0, we have s € §. Thus D'%(P) c 8. This completes the
proof. '

Let N(u) (we(—o0,0)U(0, ©)) be the spectral function corre-
sponding to an infinitely divisible measure. We introduce the functions
N,(@) = N,(u) (¢ = 1,2), where % = logu for 4 > 0 and & = —log(—u)
for u < 0. Since

aN, (%) AN, (u)
aw Mg

N,(u) i8 non-decreasing if and only if‘ZV,('TZ) is non-decreasing (¢ = 1, 2).
If 3 > 0, then ’

N(@) = Ny(w)—N,(@+3), N3@) = Ny(@)—N,(7 —3)
and
Nr*(@) = Ny(@)+ Ny (——3), N;'(@) = Ny(@)+N,(—5+3).
THEOREM 1.3. Let 8 be a compact semigroup containing 0 and 1. Then
there exists an infinitely divisible measure P such that 8 = D'4(P).

Proof. Clearly, there exist an n & {1,2,..., oo} and disjoint open
intervals U, = (uf, uf) (0<k <n+1,uf = 1) such that

[—1,1N8 = UJ T, Uu({—1}\8).
k=0

"If 0 < k < n+1, then there exists a compact sémigroup S, such that
S < 8, and

g my
[—1,11\8; =}.{ Uk.fuju’ Wi, V({—11\8),
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where m; < oo, m, < oo, and
Ups = gy up) = [—1,0]  (§=10,3,...,m)

and )
Wk.j= (wzf,nwﬁ;)c 0,11 (j=0,1,...,m)

are disjoint open intervals such that

Yoy < g (J=10,1,...,m—1), Wesn < Wiy (§=0,1,...,m—1),
Wk.O = Uo, ch,mk = Uk or Uk'”k = U,‘o

By induction we define a sequence {w;}3_,. Let #, = 1, and if we have
{#}f=s (k <m), then we put
wk = wk—llmn{ - uf—l.ﬂk_l ’ wlf—l.mk_ }‘

If n < oo, then we put ,,, = 0.
Further, let P be an infinitely divisible measure for which the cor-
respondmg spectral function is continuous (N3(1) = Ny(—1) = 0) and

dN a('“) aN 1 ('"')

= 2 (G124, O 2B,) Z (8x—1%0;, T 2D,,)

k=1 k=1

where 0< ;< a;,,, <1 (0<k<mn+1), and
my,
A, =z, + (H (Weyy By—be))y  Bi = (Fp1y Bl\4y,

(s '“ko) if —1ed,,

g
0, = —%+ e ;+ by, T, )UF, F, = "
k= % (jL_)l( s+ by T ) UF), % U, it —1¢8,

-Dk = [_‘_‘-In ""Ek-l-l)\ak’

by =%mm{ min |'¢_‘£j"'"—"£,j|’ min |‘E'f3,j — W 4l}.
Jo=0,...,n5 J=0,...,m},

It is evident that such a measure exists.

Now we shall show that for every ¥ (0 <% < »+1) the functions
ﬁ(ﬁ)l[—i,,, — ;) and ﬁ(ﬂ) | (%41, %] are non-decreasing if and only
if 8e 8,. Since

n
ﬂ 8 =8,

k=0
we have D'¢(P) = 8.
Let 0<k<n+1. We first prove that if Nf(u)|[ Z,, T;,,) and
N‘(u) [(%r415 Zx] are non-decreasing, then s e8,. We use the obvious
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inequalities
AT8 /—
(1.4) - dl\;}fu) = (@1 — @) 11 <0  for Te Wy 4Ty, 8 € Wy,
t = 0, 1, ceey My,
N =
(1.5) dl:;,ju) = (Bg_1— )22 <0 for we Uy ;—7%, 8 € Uy,

i=0,1,...,n,
where yx, is the indicator function of the set
(B — b+ 8, Z+ 81 0( Wy + ),
Zs i8 the indicator function of the set
[—Z—(—8), —%+b—(—3)] n(vk,t_;k)i

and Uy, = (@k, B8,), Wiy = (WEy, W)
Suppose that s ¢ S;. If

my
8 G‘L)o Wk,‘ = [0, 1[\8,‘,

then by (1.4) the function ﬁ(ﬂ)’ | (%41 %] i8 not non-decreasing (W,,,,+
+§,‘ c Ak’ i = 0, 1, eeey mk). If

8 E‘LJO Uk,f = (—1, 0)\8,‘,
then by (1.5) the function _lﬁ(z‘c) [[ =%y —Tys) iuot non-decreasing
(Tes—Fp = Cpy © =0,1,...,m). If —1¢8;, then N7 (@) |[—Fyy —Tp4a)
is not non-decreasing since

iN7(w)

— =1 — @ <0 ((—%, —%+b) = Cp).
du (—Zgs—Z+bp) ‘

Thus, ifﬁ(v’i) [ —%, —%,,) and YV—;(E) [(Zy41, T;] are non-decreasing,
then s € 8§,.

Now, we shall show that if s eS,,, then N‘(u)][ — Ty — Tpyy) and
Nz(u)l(x,,ﬂ,x,‘] are non-decreasing. We write 8, a8 8 = (—8z)V8{,
where if s € 8y U8}, then 8 > 0. If 8 € 8}, then we have the inclusions

N, (% —3) — _ — .
@) {#: 220> 0 = (Bu(— w0, Buwa)) 43 < (— o0, B VB
and

aN,(a+3
(1.7) {"7' 3%? ak} = (DY (—=Tpy1y ) —F € CLU(—Fpyy, ),
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gince 8} -8F = 8 and 8 -8f <= 85, respectively. Similarly, for s eS8y
we have the inclusions

_ dN,(—u+3)
(1.8) {u : 7 < -“k}

= (—D,‘U(—oo, EIc+1)) +8 c B,U(—oo, Zpt1)s

(1.9) "l_t : dN,(;az‘&—B) < —alc}
= (=BxY(—Zp41y ) =8 © DU (—Fpyy, ).

We can write N; in the form N; = N,—(N;—Nj3) (¢ = 1, 2). Let
s€l,. If e (—1)(Zps1, %], then
3(N(m) — N (@) (N, (w) — Ny (w))
< =
au S h- o du e

Since
aN,(a)

au (=)=, +10%%)

= Gy,

in the first case we have the inequality
dNy (m)

>0.
aw =

¥ %@ e (—1)"(Zy41, %), then by (1.6)-(1.9) the equality

AN @) —Ni@m) _
au *

implies
aN,(w)

au ks

thus in the second case we have
aN* ()

au > 0.

Hence, if ¢ € 8,,then N}(%)|( —1)*(Zp41, % ]isnon-decreasing (i = 1, 2).
This completes the proof.

It is clear from the proof of Theorem 1.3 that for every compact
semigroup S containing 0 and 1 there exists a probability measure P for
whicl;)ighe corresponding spectral function is continuous and such that
8 = DY(P).
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2. The decomposability semigroup D(P). It follows from the forth-
coming Lemma 2.1 and from Theorem 1.3 that the decomposability semi-
groups D(P), where P is a non-degenerate probability measure, are “dense”
in the set of all compact subsemigroups of the multiplicative semigroup
[—1,1] containing 0 and 1.

LEMMA 2.1. Let P be an infinitely divisible measure; then
N D®,) = DY(P), where P = P,",

n=1
and there exists a subsequence of integers {m,};_, such that D(P,.) > D(Pz,,)
and

fjl D(P,) = D(P).

Proof. First we prove that
D'(P) = N D(P,).

ne=l
If N(u) is a spectral function corresponding to P, then N (u)/n is
a spectral function corresponding to P,, thus D'Y(P) = D'4(P,). Since
D'Y(P,) = D(P,) for any integer n,

DYP) c ﬁ D(P,).
Let now -
se i\l D(P,),
Le. for any integer n we have P, = T, P,»P, , for a certain probability
measure P, . Thus for every n we obtain the equality
P = (T,P.)"‘tP,‘"": T,PsP,,
where P, = P;* and s € D'*(P). This completes the proof of the first part.

For a sequence {m;}i>., it suffices to take {2%} ;.

THEOREM 2.1. Let 8 be a compact semigroup containing 0 and 1 and let
K be a compact set such that K and 8 are disjoint. Then there exists a prob-
ability measure P such that

ScDP)=[—-1,1]\K.

Proof. By Theorem 1.3 there exists an infinitely divisible measure
Q such that D'%(Q) = 8. By Lemma 2.1 there exists a sequence of infi-
nitely divisible measures {P,};~, such that

D(P,,) = D(P,) and fle(P,,) — D4(Q).
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For any = € K there exists an integer () such that » ¢ D(P,) for
every k = n(x). Since (—1, 1]\.D(P,)is an open set, there exists a neigh-
borhood U(x) of # such that U(x) NnD(P,) = O for all k> n(x). Since

Ec U@
x2eK

and K is compact, there exists a finite subset {#;}~, = K (m < oo) such
that
K c U U(wj).
J=1,...,m

Thus
KEnD(P,) =@ for all k>n = max n(z).

J=1,...,m

For a measure P it suffices to take P = P, . This completes the proof.

3. The decomposability semigroup D*!(P). Let E denote the set
of all self-detomposable measures P for which the derivative N'(«) of the
corresponding spectral function N (u) is non-continuous (N'(u) denotes
a left-hand or right-hand derivative). Now we give a characterization
of the decomposability semigroups D**(P) for which the corresponding
self-decomposable measure P belongs to E.

THEOREM 3.1. Let 8 be a compact semigroup containing 0 and 1. Then
there ewists a measure P € E such that D*3(P) = 8 if and only if (1.1) holds.

Proof. It is well known that the infinitely divisible measure P for
which N is a spectral function is self-decomposable if and only if N (u)
has left-hand and right-hand derivatives for 4 # 0 and —u«N'(u) is
non-decreasing on ( — oo, 0) and on (0, oo), where N’ (u) denotes a left-hand
or right-hand derivative ([2], p. 324).

Necessity. Let P belong to E, let N be a spectral function cor-
responding to P and D*4(P) = 8. Without loss of generality we may
assume that N,(u) (» > 0) is non-continuous. Let M denote the function
defined by M(u) = —uN'(u), M,(u) = —uN,(u) (v <0) and M,(u)
= —uN,(w) («>0). Since Pe B, M,(u) (#<0O0) and M,(u) (> 0)
are non-decreaging and M, >0, M,<0. If 0 < |s| <1, then & e D*(P)
if and only if M}(u) (¢ = 1, 2) are non-decreasing. Let # > 0 be a discon-
tinuity point of N,(u). We put h = M,(v+)—M,(x—). Since h >.0,
so if 8 € D*3(P) (s # 0), then M () is non-continuous in sz and M (sz+)—
—M (sx—) > h. Since M,(u») and M,(u) are non-decreasing, M (u) is non-
continuous on a countable set without cluster points in R\{0}. Thus
we can write S in the form

(3.1) 8 = {8L}i-1V {8}V {0},

where {s;}},",,lg@ it 8n[—1,0)=6, §, <8, <0 (L<k<m) and
0<8, <8y A<SEkE<m).
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.

If §n(0,1) # G, then

z z z ]

ha?
(3.2) f u2dNy(w) = f wuN; (w)du > f uzkhx(a,,ﬂz.a,,z]d“ =" 8+
. | 0 0 k=1 k=1
I¥ 8§n(—-1,0) #9, then
0 0o
(3.3) f wdN, (u) = f (—w( — udVj () du
- -zo ) ot
. ha? Iy
> f ( —’u; h % 52,8, +,z)) du =—— ,,2; & -
- - -

Since
h>0 and fu’dN(u)< 00,

by (3.2) and (3.3) we obtain (1.1). This completes the proof of the necessity.

Sufficiency. Let us suppose that (1.1) holds. We write 8 in the
form (3.1). Let P be an infinitely divisible measure for which the corre-
sponding spectral function N is continuous (N(—2) = N(2) = 0) and

»
—uN'(u) = 2 Xisptfyy) Z ¥ op4 1002

(if m = 1, then we put 8, = 0, and if » = 1, then we put 8, = 0). Similarly
a8 in Theorem 1.2 we can show that D*d(P) = 8. This completes the proofs

THEOREM 3.2. Let 8 be a compact semigroup containing 0 and 1. Then
there exists a self-decomposable measure Q such that 8 = D*(Q).

Proof. Let Q be an infinitely divisible measure for which M is the
corresponding spectral function. Since
dM‘(u) — (-
du
Q is self-decomposable if and only if the functions
aM,(u)
du

1); 57 t(’“)
au

(-1t (¢ =1,2)
are non-decreasing.

Let P be an infinitely divisible measure for wh.lch D'4(P) = S and the
corresponding spectral function N is given as in the proof of Pheorem 1.3.
Let M be a continuous function on R\ {0} (M(— o) = M(o0) = 0)
such that

.

® _yw =1,2),

-1 141
( ) au

[ ]
12 — Colloquium Mathematicum XLIV.2
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where M; = M|(— o0, 0) and M, = M|(0, o). We have the inequality
1

1 1
f‘u’dM(u) = — f‘ ulN (w)du < —-2fulogudu =%< oo,
-1 0

-1

Hence M is a spectral function.

Let Q be an infinitely divisible measure for which M is the corre-
sponding spectral function. Since
a3 (w)

au
we have D*(Q) = D'(P). Thus D*(Q) = 8. This completes the proof.

(—1)+ =M@ (i=1,2),
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