COLLOQUIUM MATHEMATICUM

VOL. XXXVII 1977 FASC. 2

STRONGLY HOMOTOPICALLY STABILE POINTS

BY

A. LELEK (DETROIT, MICHIGAN)

The notion of a point.of stability of a function plays a role in dimension
theory and its applications to embeddings of topological spaces into
Euclidean spaces. For example, a well-known theorem says that a compact
metric space is at least n-dimensional if and only if it can be transformed
into the m-cube by a continuous mapping which is stabile at a point
(see [7], p. 75-77). A modified version of this notion is applied in the present
paper to curve theory and, in particular, to studying some local proper-
ties of arcwise connected continua. Among other things, a result is obtained
on a stability of locally confluent mappings (see 3.1).

1. Definitions and examples. By a mapping we always mean a con-
tinuous function. Given two mappings f: X - Y and ¢g: X > Y, we
write f ~ ¢ to indicate that f and g are homotopic. We say that a mapping
f: X — Y is strongly homotopically stabile at a point x, € X provided f ~¢
implies f(z,) = g(x,) for each mapping ¢g: X — Y. Equivalently, the
mapping f is strongly homotopically stabile at x, provided, for each homo-
topy h: X xI > Y, where I =[0,1] and h(x,0) = f(x) for xe X,
we have h(x,,t) = f(x,) for ¢t € I. Thus, if the identity mapping of a topo-
logical space X is strongly homotopically stabile at a point z, € X, then
the point 2, is homotopically stabile in the sense investigated by Borsuk
and Jaworowski [2], and originally due to Hopf and Pannwitz [6]. It
follows directly from the definition that, for each mapping f: X - Y
of a topological space X into a Hausdorff space Y, the set of all the points
of X at which f is strongly homotopically stabile is closed in X. In the case
where a Hausdorff space Y does not contain any arc containing a given
point y, € Y, it is clear that each mapping f: X — Y is strongly homoto-
pically stabile at each point z, such that f(x,) = y,. In this paper we
shall, however, be primarily concerned with spaces that contain many
arcs.

A continuum is understood to mean a connected compact metric
space, and one-dimensional continua are called curves. We say that a curve
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is acyclic provided each mapping of it into the circle is homotopic to a con-
stant mapping. A dendroid is an arcwise connected acyclic curve. A mapping
f: X - Y of a topological space X into a topological space Y is interior
at a point z, e X provided f(x,) € Intf(U) for each open subset U < X
containing z, (see [12], p. 149). The mapping f is open if it is interior at
each point of X.

1.1. Example. There exist a dendroid D on the plane and a point y, € D

such that each mapping f of a topological space X into D which is interior
at a point x, € X, where f(x,) = y,, 18 strongly homotopically stabile at x,.

Proof. We denote by pgq the straight-line closed segment with
end-points p and ¢. Taking the points

p:(_]-’O)a q:(170)7
p; = (01 "i—l)7 q = (0"’:—1) (@ = 1727 )7

we define D to be the union
D =pqu L_Jl (PP Y 94,).

Clearly, D is a dendroid. Let y, = (0, 0). Assume that f: X - D
is a mapping of a topological space X into D such that f is interior at z, e X
with f(z,) = y,. Suppose, on the contrary, that f is not strongly homo-
topically stabile at z,. It means that there exists a homotopy h: X x I - D
such that k(x, 0) = f(x) for x € X, and the set h({x,} x I) is non-degenerate.
The latter set represents a path in D whose initial point is y,. Since p +# ¥,
7# ¢, there exists a mumber ?, € I such that the set h({r,} x J), where
J = [0, 1,], is & non-degenerate subset of D\{p, q}. Thus {x,} x J is con-
tained in the set A~'(D\{p,q}) which is open in X x I. Since J is
compact, there exists an open subset U = X such that 2, ¢ U and

(1) UxdJd < b Y (D\{p, ¢}).
The sets )

DIZZT?/OU'_LJIﬁi and D2=@0UHQ_Qi

are subdendroids of D and their union is D. We prove that
(2) h({we} xJ) =« D; (j =1,2).

If h({x,} xJ) ¢ D;, where j =1 or 2, then there is a number ¢, € J
such that h(x,,t;) e D\D;, so that (%, t;) is a point of the open subset
h™'(D\Djy) of X x I. Consequently, there must exist an open subset V; ¢ X
such that «, € V; and

Vi x {t;} = 71 (D\Dy),
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whence, by (1), » maps (UnV;) x {{;} into both D\ D, and D\ {p, q}. The
set UnV; is open in X and it contains the point x,. Since the mapping f
is interior at z,, we get

Yo = f(@o) € Intf(UNV}),

which implies that the set f(UnV,) contains all but a finite number of
the points p, and ¢;, as each of these sequences converges to the origin y,.
Ifj = 1, take a point p; € f(UnV,). Then p; = f(x,), where z, € UnV,,
and we have h(x,, t,) € D\D,. Also, by (1),

h({z:} xJ) = D\{p}.
Since
h(xy, 0) = f(2:) = p;,,
the set h({x,} x J) represents a path in D\{p} whose initial point is Di,-
The point p, however, cuts the dendroid D into components such that
the component of D\ {p} containing p; is pp, \{p}, a subset of D,. We
obtain h({z,} XxJ) < D, which contradicts the fact that h(xy,?t,) ¢ D,.
If j = 2, the argument is completely analogous, with all the subscripts 1
changed to 2, and p, p, replaced by g, ¢;, respectively. Hence (2) is
proved.
We notice that D,nD, = {y,}. This, by (2), yields k({x,} X J) = {¥,}-
As a result, the set h({r,} x J) is degenerate, a contradiction completing
the proof of 1.1.

1.2. Example. There exist a dendroid E on the plane and a countable
dense subset B — FE such that each mapping f of a topological space X into E
which 18 interior at a point x, € X, where f(x,) € B, is strongly homotopically
stabile at x,.

Consequently, if f: X — E is a mapping which is interior at each point
of a dense subset A = X, where f(A) < B, then f is strongly homotopically
stabile at each point of X; that is, f ~ g implies f = g for each mapping
9: X - FE. Hence, if f: X - E is an open mapping, then f ~ g implies
f = g for each mapping g: X — E. In particular, the last implication holds
Jor f being the identity mapping of E.

Proof. A construction of such a dendroid has been given in an earlier
paper (see [5], p. 193). Here we only sketch the proof of its main property
involving strong homotopic stability. The dendroid F is constructed by
means of a sequence of countable collections R, of some rhombi on the
plane. We define B to be the set of the mid-points of longer diagonals
of all the rhombi in R, (n = 0,1, ...). Let y, € B and let R € R, be the
rhombus whose longer diagonal, say pg, has y, as its mid-point. Those
rhombi of R, ,, which are contained in R form the collection R(R) which
is the union of four sequences of rhombi (ibidem). The first two of these
sequences consist of rhombi attached to pq at the mid-point y,. The third
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and the fourth sequences, however, consist of rhombi attached to pq at p
and g, respectively, in the same manner as the segments pp, and qq; were
attached to pq in the proof of 1.1. If f: X — F is a mapping of a topological
space X into E such that f is interior at x, ¢ X with f(x,) = v,, then the
proof of 1.1 can be adapted, without any significant change, to this new
situation. As a result, f is strongly homotopically stabile at z,.

Remarks. The dendroid F from 1.2 is connected im kleinen at a point
y € E, that is, there exist arbitrarily small connected closed neighbour-
hoods of y in E. Actually, ¥ is connected im kleinen at each point of a dense
subset of E (cf. [5], p. 191). Nevertheless, E is not locally connected at
any point (ibidem, p. 192). By a minor modification in the construction
of E, one can, however, have another dendroid E’ such that E’ satisfies
all the conditions listed in 1.2 and, in addition, E’ is locally connected
at each point of a dense subset of E’. Namely, one can strictly follow
the pattern suggested by the construction of the dendroid D in 1.1, and
instead of taking four sequences of rhombi whose union is R(R) in the
definition of the dendroid (ibidem, p. 193) take only two of them: the third
and the fourth ones. The new dendroid £’ so obtained will be locally connec-
ted at each end-point of the longer diagonal of each rhombus that appears
in the definition; the set of all such end-points will be dense in E’. On
the other hand, it seems impossible here to achieve local connectedness
everywhere. This is related to the following unsettled conjecture (cf. 2.6
below): for each locally connected continuum Y, there exists an open
mapping f: X — Y of a continuum X onto Y such that f is not strongly
homotopically stabile at any point of X (P 1009). According to a result
of Anderson [1] (see also [9], Theorem 4.1), each locally connected con-
tinuum Y is the image of the Menger universal curve M under an open
mapping f such that f~!(y) is homeomorphic to M for y € Y. We do not
know whether the Anderson mapping is strongly homotopically stabile
at a point. If it were not, it would solve the above-mentioned conjecture.
In this case, the fact that the components of the sets f~!(y) are non-de-
generate would be essential (see 3.1).

2. Local acyclicity and confluency. We say that a curve X is locally
acyclic at a point z, € X provided therc exists a subset A < X such that
@, € Int A and each mapping of 4 into the circle S is homotopic to a con-
stant mapping. Clearly, the set of all the points of a curve X at which X
is locally acyeclic is open in X. The circle § itself is an example of a curve
which is not acyeclic although it is locally acyeclic at each point of S.

2.1. If X is a curve and z, € X, then a necessary and sufficient condi-
tion for X to be locally acyclic at x, is that there exist a closed neighbourhood U
of zy in X such that, for each closed subset C = U, each mapping of C into
the circle is homotopic to a constant mapping.
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Proof. The condition is trivially sufficient. To see that it is also
necessary, let us assume that X is locally acyclic at z,, i.e., there is a set
A < X with z, € Int A and each mapping f: A — § is homotopic to a con-
stant mapping. Let U = X be any closed subset such that z,eInt U and
U c A.I£C < U is a closed subset, then C is closed in 4. Since dimA =1,
each mapping ¢: C — 8 admits a continuous extension f: 4 — S (see [10],
p. 354). Thus f is homotopic to a constant mapping, and so is ¢ = f|C.
The proof of 2.1 is completed.

We say that a mapping f: X — Y of a compact metric space X onto
a compact metric space Y is confluent [3] provided, for each continuum
C < Y and each component K of f~!(C), we have ¢ = f(K). The mapping f
is said to be locally confluent at a point y, € Y provided there exists a closed
neighbourhood V of y, in Y such that f|f~'(V) is a confluent mapping
of f~!(V) onto V (see [4], p. 239). When we say that a mapping f is locally
confluent, without specifying at which point, it means that f is locally
confluent at each point of its range. Obviously, each confluent mapping
is locally confluent. All the surjective open mappings of compact metric
spaces are confluent (see [12], p. 148). It is apparent that the class of
confluent mappings also includes all those surjective mappings of compact
metric spaces which are monotone, that is, have connected point-inverses.

2.2. THEOREM. Let f: X — Y be a mapping of a compact metric space X
into a curve Y and let x, € X be a point such that Y is not locally acyclic at
f(@y) and the following condition is satisfied:

(*) there ewxist arbitrarily small closed meighbourhoods U of xz, in X
for which f(x,) € Intf(U) and f| U is a confluent mapping of U onto f(U).

Then f is strongly homotopically stabile at x,.

Proof. Suppose, on the contrary, that f is not strongly homotopically
stabile at x,. It means that there exists a homotopy h: X xI — Y such
that h(x, 0) = f(x) for ¢ € X and h(z,, 1) # f(x,). Write f,(z) = h(z, 1)
for © € X. Since f(z,) # fi(z,), we can find a closed neighbourhood U,
of z, in X such that

(3) F(U)nf1(Uy) =0

and U, is one of the neighbourhoods whose existence is guaranteed by (*).
Thus f(x,) € Intf(U,) and f| U, is a confluent mapping of U, onto f(U,).
But the curve Y is not locally acyeclic at f(z,). By 2.1, there exist a closed
subset ¢ < f(U,) and a mapping g: C — 8 such that g is not homotopic
to a constant mapping. We can assume that C is a continuum (see [10],
P. 425 and 427). Sinee f| U, is confluent, there exists a component K of
(f1U,)"Y(C) such that C = f(K). Consequently, by (3) we have Cn f,(K)
= . Moreover, the mapping f|K of K onto C is also confluent (see [3],
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P. 213). Let
gl: CUfI(K) —)S

be the mapping defined by the formula

gly) for yeO,

0(y) = 1 for y e f,(K).

Since Y is a curve, there exists a continuous extension g,: Y — §
of g, (see [10], p. 354). Let us define a homotopy %,: K x I — S by means
of the formula

hi(x,t) = g h(z,t) (reK, tel).
For each point z € K, we obtain

ky(2, 0) = g,h(z,0) = §,f(z) = gf(2),
h(zy1) = gih(z,1) = §,f1(®) =1,

so that the composite go(f|K) is homotopic to a constant mapping.
Since f| K is confluent, it follows that g is homotopic to a constant mapping
(see [11], p. 229), which is not the case; hence Theorem 2.2 is proved.

Remarks. If a mapping f: X — Y {fulfills condition () of 2.2 at
a point x, € X, then f is interior 2t z,. Fulfilling condition (*) at each point
of X implies that f is an open mapping. There exist, however, open mappings
which do not satisfy (*) (see 2.3). A subeclass of the class of open mappings
has extensively been investigated. It is the class of those open mappings
which are light [12], that is, have zero-dimensional point-inverses. The
following question remains unanswered: is it true that each light open
mapping of a compact metric space into a compact metric space satisfies
condition (x) at each point of its domain? (P 1010) We note that the con-
clusion of Theorem 2.2 holds for some light open mappings of compact
metric spaces into curves (see 3.1). Example 2.3 indicates that the question
would have been answered negatively if the lightness of the mapping had
not been assumed.

2.3. Example. There exist an irreducible continuum X on the plane
and an open monotone mapping f: X — I such that f does not satisfy con-
ditvon (*).

Proof. This example is due to Knaster [8] who constructed a con-
tinuum X on the plane such that X is irreducible between two points
P,q € X and there is an open monotone mapping f: X — I with non-
degenerate point-inverses, and with f(p) = 0 and f(q) = 1. Let z, e f~'(3).
Since f~!(}) is non-degenerate, there exists another point z, e f~'(}),
x, # x,. Suppose, on the contrary, that condition () is satisfied. There
exists then a closed neighbourhood U, of z, in X such that x, ¢ U,,
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f(z,) € Intf(U,), and f| U, is & confluent mapping of U, onto f(U,). Thus
f(z,) = 4 and there exist numbers a and b such that

l<a<i<bdb<l, [a,bd]cf(U,).

Since f|U, is confluent, there exists a component K of the set
(f1 0" Y[a@, b]) with [a,b] = f(K). Hence K < U, and z, ¢ K. But
f(z,) = 4, so that the set

= £([0, a) VEUf~([b, 1))

does not contain x,. The points a and b are in f(K), whence K meets both
([0, a]) and f~'([b,1]). It follows that K’ is a subcontinuum of X
which joins p and ¢. This contradicts the fact that the continuum X is
irreducible between p and gq.

24. If X and Y are compact metric spaces and f: X X Y — Y 18 the
projection of the product X x Y onto Y, then f satisfies condition (x) of 2.2
at each point of X X Y.

Proof. Let (z,,¥,) e X x Y and let U and V be any closed neigh-
bourhoods of z, and y, in X and Y, respectively. Then U x V is an (arbi-
trarily small) closed neighbourhood of (z,, ¥,) in X X Y, and y, = f(@,, ¥)
is an interior point of V = f(U x V). Let C < V be any continuum and
let K be a component of

UxC = (flUxV)"}(0).

Thus f(K) < C. Let (z,,y,) € K be any point. Since z, € U, we have
{z,} xC < U x C, where {x,} xC is a continuum. The latter continuum
meets K, as y, € C. It follows that {z,} x C < K, whence

¢ = f({f@} x €) < f(K)

and, therefore, C = f(K). But f(K) = (f|UxV)(K), so that flUXV
is, indeed, a confluent mapping of U x V onto V, and condition (*) is
satisfied. This completes the proof of 2.4.

2.5. COROLLARY. If X is a compact metric space and Y is a curve such
that Y 18 not locally acyclic at any point, then the projection of X X Y onto Y
18 strongly homotopically stabile at each point of X X Y. In particular, the
tdentity mapping of XY is strongly homotopically stabile at each point of Y.

2.6. If Y is a topological space, A < Y is an arc, and y, c A, then
there exist a topological space X, a monotone mapping f: X — Y, and a point
%y € X such that f(x,) = y, and f is not strongly homotopically stabile at x,.

Proof. Let A’ =« A be a subarc one of end-points of which is ¥,.

Let g: I — A’ be a homeomorphism of I onto A’ such that ¢(0) = ¥,.
We define

=(¥Yx{0h)v({ye} xI), x = (¥, 1),
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and f(#) = h(x,0) (x € X), where the homotopy h: X xI - XY is given
by the formula

Y for (y,s) e Y x{0}, tel,

h((w,9),1) g(st) for (y,8)e{y}xI, tel.

Remarks. The product projections constitute a special case of
open mappings. Since the Menger universal curve and the Sierpinski
planar universal curve (see [10], p. 275) are not locally acyclic at any
point, it follows from 2.5 that the product projections onto these curves
are strongly homotopically stabile at each point. Some other mappings
onto these curves, including light open mappings, have also the same
property (see 3.2 and 3.3). However, by 2.6, monotone mappings onto
either the Menger curve or the Sierpinski curve need not be strongly homo-
topically stabile. These two curves are locally connected without being
locally acyclic. The dendroid E of 1.2 is an example of a curve which is
acyclic without being locally connected and also has the property that
the product projections onto E are strongly homotopically stabile at each
point. As indicated in the Remarks following 1.2, the dendroid E can be
modified so that the new dendroid E’ becomes locally connected at each
point of a dense subset. We point out that a stronger combination of
local connectedness and local acyclicity leads to a different result (see 2.7),

Given a compact metric space X, we denote by K (X) the set of all
the points of X at which X is connected im kleinen. It is rather obvious
that K (X) is a G,-subset of X and that X is locally connected at each point
of Int K(X) (see [6], p. 189).

2.7. THEOREM. If f: X — Y 8 a mapping of a metric space X into
a curve Y and x, € X is a point such that f(x,) e Int K(Y), and Y is locally
acyclic at f(x,), then f is not strongly homotopically stabile at x,.

Proof. Write y, = f(,). Since the curve Y is locally acyeclic at y,,
there exists, by 2.1, a closed neighbourhood V, of y, in Y such that, for
each closed subset C = V,, each mapping of C into the circle is homotopic
to a constant mapping. The set

(4) G, = [Int K(Y)]n (IntV,)

is an open neighbourhood of y, in Y. Since Y is connected im kleinen at y,,
there exists a continuum C, < G, such that y, € IntC,.

We claim that the continuum C, is locally connected. Suppose that
it is not. Then C, contains a non-degenerate continuum C’ of convergence
(see [10], p. 245). It means that

¢’ = Lim0;,, 0'nC, =0 (i=1,2,..),

1—00
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where C; are subcontinua of C,. Let p, ¢ € C’ be two distinct points. Since
C'cC =@y, =« K(Y), by (4), the continuum Y is connected im kleinen
at p and ¢q. Thus in Y there exist connected closed neighbourhoods U,
and U, of p and ¢, respectively, such that U,, U, =« G, and U,nU, = 9.
Since C; converge to C’, there is a subscript 4, with ; intersecting both U,
and U,. The sets

K, =0vU,vU, and K,=0(;VU,VU,

are continua whose common part is U,uUU,, a non-connected set. Conse-
quently, the continuum K, UK, which is a subset of G, is not unicoherent,
and so it admits a mapping into the circle which is not homotopic to a con-
stant mapping (ibidem, p. 437). Since K,VK, = G, = V,, by (4), this
contradicts the main property of V,. We have proved that C, is locally
connected.

By (4) we also have (; = V,. Hence C, is a unicocherent locally connec-
ted subcontinuum of the curve Y. It follows that C, is a dendrite (ibidem,
p. 442). Let us write 4 = f~'(C,). Since y, € IntC,, we get z,cInt A,
i.e., the closure of X\ 4 in X does not contain the point z,. The union

B = (A x {0} ([Ancl(X\NA)] x I) U {(z, 1)}

is a closed subset of the product A X I. Let y, € C, be any point different
from y,. The formula

flx) forxed,t =0,
g(z,t) ={f(x) for xe Ancl(X\A4), tel,
Yy for x =x, t =1,
defines a mapping g: B — C,. Since the dendrite C, is an AR-space (ibidem,

p. 339), there exists a continuous extension g: A x I - C, of ¢g. A homo-
topy h: X x I — Y can now be defined by the formula

gx,t) foraxed,tel,

h(z,1) =
f(x) for x ecl(X\A4), tel,

whence
h(z,0) = f(x) for xe X,
and

h(xgy1) = g(@9y 1) = g(@oy 1) = Y1 # Yo-
As a result, the mapping f is not strongly homotopically stabile at z,.

3. Light locally confluent mappings. The following theorem is an
analogue of Theorem 2.2 for locally confluent mappings.

3.1. THEOREM. Let f: X - Y be a mapping of a compact melric
space X into a curve Y and let xy € X be a point such that Y is connected
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im kleinen at f(x,), Y 8 not locally acyclic at f(x,), f 18 locally confluent at
f(#,), and

(+%) dim,, f~'f(z,) = 0.
Then f is strongly homotopically stabile at x,.

Proof. Put y, = f(x,). Since f is locally confluent at y,, there exists
a closed neighbourhood V of y, in ¥ such that f|f~'(V) is a confluent
mapping of f~!(V) onto V. The connectedness im kleinen of ¥ at y, implies
the existence of an infinite sequence of continua C; = Y such that

(5) {yo} = QC,"’ yoelntoi, G‘i+l c Ci c V (’i = 1’2, ...).

Fori =1,2,...,let K; be the component of f~!(C,) which contains z,.
First, we need to prove that
(6) limdiam K; = 0.
The point x, belongs to each of the continua K,. It follows that
the set
K ' = LS 'Kt'

1—00

is a continuum (see [10], p. 171). Also, by (5) we have

K' = ﬂl cl onKm < ﬂl elf~1(C;) = f (ﬂ Ci) = 7' (5o)-

If (6) were not true, K’ would be a non-degenerate continuum con-
tained in f~!(y,) and containing z,, contrary to ().

To complete the proof of Theorem 3.1, let us suppose that the con-
clusion of this theorem does not hold, i.e., there exists a mapping f,: X - Y
such that f ~f, and f(x,) # f1(%,). Then there is a neighbourhood U of z,
in X such that f(U)nf,(U) = 9. By (6), there exists a positive integer 7,
with K; < U. Since C;; = V by (5), and f]| f~1(V) is a confluent mapping
of f~!(V) onto V, we have C; = f(K,), and f|K; is a confluent mapping
qf K;, onto C; (see [3], p. 213). Thus

Cio nfi (Kio) =0.

On the other hand, since Y is not locally acyclic at y, and y, € Int Ciy»
a mapping of C; into the circle is not homotopic to a constant mapping.
We have seen in the proof of Theorem 2.2 that the existence of such
continua ¢ = (;, and K = K; leads to a contradiction.

3.2. CorOLLARY. Each light locally confluent mapping of a compact
metric space X onto a locally commected curve which is mot locally acyclic
at any point 18 strongly homotopically stabile at each point of X.
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3.3. CorOLLARY. If f: X — Y s a light open mapping of a compact
metric space X onto a locally connected curve Y which is mot locally acyclic
at any point, then f ~ g implies f = g for each mapping g: X - Y.

Remarks. According to 2.6, there exists a monotone mapping f
of a curve onto the Sierpinski curve such that f is not strongly homoto-
pically stabile. Then f is confluent, hence locally confluent. Consequently,
the zero-dimensionality of point-inverses is a necessary condition in both 3.1
and 3.2. As condition (*x) of 3.1 suggests, there may exist a higher dimen-
sion analogue of Theorem 3.1. To find such an analogue is, however,
an open problem (P 1011). This problem seems to be related to an earlier
one, namely to the problem of finding an appropriate definition of an
n-dimensional analogue of confluent mappings such that the homotopy
cancellation rule holds for mappings into the n-sphere (see [11], p. 233).
When such a definition is found, one could hope to be able to generalize
Theorem 3.1' to cover some types of mappings of compact metric spaces
into n-dimensional continua (n > 2).
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