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ON THE FORMULA OF SLEBODZINSKI FOR LIE DERIVATIVE
OF TENSOR FIELDS IN A DIFFERENTIAL SPACE

BY

HANNA MATUSZCZYK (WROCLAW)

In this paper we introduce the concept of a fibered tensor space
over a differential space in a way such that each smooth tensor field is
a smooth section of that tensor space. Lie derivative with respect to a
vector field is introduced by means of the one-parameter Lie group,
and the fundamental Slebodzinski’s formula is derived.

1. Tangent and cotangent fibered space. Let (M, C) be a differential
space and let 7, stand for the weakest topology on M such that all a € C
are continuous, whereas O, stands for the set of all f: U — R such that
for each p € U there exist V € 75 and a € C with the condition |V = a|V,
P €V (see [1]). For any p € M we define the set C(p) as the union of all
sets C, where p € U € 75. The tangent space (M, C),, by Sikorski’s
definition (cf. [2] and [3]), is isomorphic to the vector space T, (M, C)
of all mappings v: C(p) — R such that

v(a+B) = v(a)+v(B), v(ca) = cv(a),
v(aB) = a(p)(8)+B(P)v(a)

for a, B € C(p) and ¢ € R. Here a+ B and af are defined on the common
part of the domains of a and g and, of course, belong to C(p) whenever
a, f € O(p).

ProposITION 1.1. If (M, 75) 8 a Hausdorff space, then for any p,q
n M, p #q, the tangent spaces T, (M,C) and T,(M, C) are disjoint.

Proof. For p,qe M, p +# q, there exists U et such that pe U
and q ¢ U. Then, for some a € 0, we have a(p) # a(q). Hence a|U € C(p)
and a|U ¢ 0(g). In other words, O(p) # C(q). Thus T, (M, C) and T,(M, C)
are disjoint.

For pure technical reasons we will assume that (M, 7.) is a Hausdorff
space.

It follows from Proposition 1.1 that we have exactly one mapping =,
defined on the union of all vector spaces T,(M, C), p € M, which sends
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every element v of this union to the point p € M such that v belongs to
T,(M, C). This mapping is called the projection of the tangent fibered
space of (M, C). In the union of all vector spaces T,(M,C), p € M, we
take the smallest differential structure containing the set {eon; a e C}U
U {as; a € C}, where a,(v) = v(a) for v of the domain of z». The domain
of n together with that differential structure will be called the tangent
bundle of the differential space (M, C) and will be denoted by T(M, C).

Any mapping X which assigns to each point p € M the vector X (p)
of T,(M,C) is called a vector field on (M, C). The vector field X is said
to be smooth if for every a € C the function dya defined by the formula.

(0xa)(p) = X(p)(a) for peM
belongs to C. Let (M, C) denote the set of all smooth vector fields on
(M, C). By an easy verification we get

PRrOPOSITION 1.2. Any vector field X on (M, O) is smooth if and only if
X: (M,C)>T(M,C) is a smooth mapping.

Now we define the cotangent bundle of a Hausdorff differential
space. Any element of the space (T,(MM, C))*, i.e. of the dual vector space
to T,(M, C), is said to be a tangent covector of (M,C) at the point p.
A tangent covector of (M, C) at any point p € M will be called, shortly,
a tangent covector of (M, C). It follows from Proposition 1.1 that for every
tangent covector w of (M, C) there exists exactly one point *=(w) such
that w is a tangent covector of (M, C) at *z(w). So we have a mapping *m
of the set of all covectors of (M, C) onto M. In what follows we shall
write n instead of *x. Every covector w of (M, C) is an element of
(T oy (M, O

Let X be a smooth vector field on (M, C). For any tangent covector w
of (M, C) we set X(w) = w(X(n(w))). It is easy to see that we have the
real-valued function X linear on each space (T, (M, C))*. Taking the
smallest differential structure on the set of all tangent covectors of (M, C)
containing the set {aon; a e O}U{X; X € (M, )}, we obtain a differen-
tial space which will be called the cotangent fibered space of (M, C) and
denoted by T* (M, C). We have also the smooth map »: T*(M, C) - (M, C)
called the projection of the cotangent bundle of (M, C).

-2, Tensor fibered space. For any Hausdorff differential space (M, C)
and for any point p € M we consider the tensor algebra ® T,(M, C) over
the linear space T,(M, C). We have the natural inclusions of T,(M, C)
and (T,(M, C))* into ®T,(M, C). In this section we shall write T5(M, C)
instead _of T,M,C), and T,'(M,C) instead of (T,(M, C))*. For any
¢ = (&, ..., &), where ¢, € {—1, 1}, we denote by ®°T,(M, C) the linear
subspace of the linear space @ T, (M, C) generated by the set of all tensors
v ® ... ®v,, where v, is from T*(M,C), h =1,...,k Any element
of ®T,(M, () is said to be a tensor of type ¢ at the point p. A mapping



FORMULA OF SLEBODZINSKI 235

which assigns to every point p € M a tensor Z(p) of type ¢ at p is said
to be a tensor field of type e on (M, C). As above, denoting by = the mapping
which assigns to every element ¢ of the union of all sets of ®T,(M, C),
P € M, the point x(f) such that is from ® T, (M, C), we may regard Z
as a mapping such that moZ = id,,.

Before defining the differential structure on the set of all tensors
on (M, C) we consider basic smooth functions y defined as follows. Let
£ = (15 ...58)y ep€{—1,1}. Let set®°T(M,C) be the union of all
®T,(M, C), where p € M. Let y, = ay., a, €0, if g, =1, and y, = X,,
X,eZ(M,QC), if ¢ = —1. There exists exactly one function [y,, ..., 7,]
defined on set ‘T (M, C),

(Y15 oo VeJ(02® oo V) = p1(vy) ... Yi(Vg),y

where n(v,) = ... = n#(v,). We can extend this function to the function y
defined on set®T'(M, C), the union of all sets of elements of ® T, (M, 0),
where p € M, by setting y(¥) = [y1y .-+, ¥%](t) for ¢t esetQ‘T(M, C) and
y(t) = 0 for t ¢ set °T'(M, C).

Every tensor algebra ®T,(M, C) has the subalgebra of all scalars.
This subalgebra, denoted by ®©T, (M, C), is isomorphic in a natural
way to the algebra of all real numbers. Similarly as before we denote
the union of all sets of elements of ®‘°’Tp(M ,C), where p e M, by
set @' T (M, C), ¢ =(0). Every function y defined on setx7 (M, ()
by 7(p(r)) = r for any real r, where p is the natural isomorphism of all
real numbers onto 97T, (M, C), and by y(t) = 0 for t ¢ QT (M, C) will
be also regarded as a basic smooth function.

The smallest differential structure on set®7 (M, C) containing all
described basic smooth functions as well as all functions of the form ao=,
where o € C, is called the differential structure of the temsor fibered space
®T(M, C) over (M, (). It is easy to prove the following

ProPOSITION 2.1. If (M, C) is an m-dimensional differentiable mani-
Jold, then the differential space induced on set @°T (M y0)y € = (&1y .-+y &)
by the differential structure of QT (M, C).is an (m +m*)-dimensional differ-
entiable manifold being the total space of the tensor- bundle of all tensors. of
type ¢, the base space’of which is (M,C).

3. One-parameter local Lie group. Let E denote the set of all real
functions of class C* on the set of all real numbers and let us consider any
one-parameter local Lie group in a differential space (M, C), i.e. (cf. [5])
a ‘smooth  mapping

(1) .90 (U, 0g) x T B) > (I, 0),

where U € 7, I is an open interval, 0 € I, satisfying the following eordi-
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tions:
(i) if t,8,t+8 €I and p, ¢(p,?) € U, then

‘P(‘P(fp’t),s) = @(p,1+38);

(ii) ¢(p,0) =p for pe TU.
It follows immediately (cf. [5]) that for ¢ € I we have the diffeomor-
phism

(2) @2 (U, GU,) - (U_, Cy_,),

where U, = (¢(,?))"'[U] and ¢,(p) = ¢(p,?) for p € U,, and for any
p € U there exists 6 > 0 such that p € U, for t € (—d, J). Of course, U, is
open for tel.

By ¢(p, t) we denote the vector tangent to (M, C) at the point ¢(p, t)
defined by the formula

(3) ¢(p,t)(a) = (aog(p,))(t) for ael(p).
By an easy verification we get (cf. [5])

PROPOSITION 3.1. For every ome-parameter local Lie group (1) the
Jormula

(4) X(p) =¢(»,0) forpel
defines a smooth vector field X on U tangent to (M, C) and such that

X(‘P(Iht)) =@(p,t) forpeU, tel.

The vector field defined by (3) is said to be induced by the one-
parameter local Lie group (1).

PrOPOSITION 3.2. For any p € U there exists n > 0 such that for every
te(—n,n) we have the isomorphism

(5) Ptap;* Tp,( Uiy CU,) > T,(U_y, GU_,);

where p, = ¢(p, —t) € U. This isomorphism induces in a natural way
the following three isomorphisms:

(6) @ (p): Tp‘(M; 0) -~ T,(M, 0),
(7) o~ (p): (Tp (M, O)* — (T,(M, O)),
®) 5(D): BT, (M, C) > @T,(M, ).

Moreover, for any 'v,,.in T;,’;(M ,0), h =1, ..., k, regarded as elements
of ®T,(M,C), we have

(9) 5(D)(0:® ... @) = ¢V (D) (9) B ... Q7 (D) (W),

where ¢ = (e,, ..., &).
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A system
(10) Way ooy Wi

of smooth vector fields on a differential space (M, C) is said to be a local
vector basis at the point p (cf. [2]) if there exists a neighbourhood U of p such
that for any q € U the vectors W,(q), ..., W,.(q) are a basis for the vector
space T,(M, C). The differential space (M, C) is said to be of local dimension
m at the point p if there exists a local vector basis (10) at p. The vector
fields W, can be defined only on some neighbourhood of p. By C-regu-
larity of (M, C), this is equivalent to our assumption.

ProrosITION 3.3. If (M, C) s of local dimension m at the point p,
then for any tensor field Z of type ¢ = (&, ..., &), $mooth on (M, C), and
for any iy, ..., 4 €{1, ..., m} there are functions Z; _, of class C* on (—n, )
such that for t € (—n, n) we have

(11) Zp) = D Ziy.,0el()® ... ®ek(),

T1seensty
where p; = @(p, —1), €1(t), .., €5,(t) is a basis for the vector space T, (M, C)
and e '(t), ..., e, (t) 18 its dual basis. Moreover,

(12) o (eh(t) = €(0), h=1,...,m, |u =1.

Proof. Let W,, ..., W,, be a local vector basis at p. From C-regu-
larity of (M, C) (see [3]) it follows that there exist smooth 1-forms
W, ..., W™ defined on (M, C), i.e. sc me mappings W*: (M, 0) -~ QT (M, 0)
are smooth tensor fields of type (—1) such that Wi(q)(Wy(q)) = &
for ¢ in some neighbourhood of the point p, and A,z =1,...,m.
Proposition 3.1 yields the existence > 0 such that for ¢ € (—7, ) we have
the isomorphisms (5)-(8).

After identification of T,(M, () with ®"7T,(M,C) and (T, (M, C))*
with @IT (M, C) we set, for t e (—2, ),

(13) e,l,(t) = (‘Psl)(P))—l(Wh(P))y h=1,...,m,
(14) e (1) = (e V(p) 7 (WiDp), ©=1,...,m.

It is easy to check that we have the basis ej(f), ..., ey () for
®WT, (M,C) and its dual e'(t),...,e, (1) for ®VT,(M,C). The
elements ¢)(t) and e;'(t) are identified with (-, —t)s,(Wx(p)) and
W(p)og(-, t)xp,» Tespectively. It is easy to verify that e;,(0) equals W,(p)
regarded as an element of ®WT, (M, C). Similarly, e¢;'(0) is identified
with W*(p). Hence (12) holds.

The vectors W,(p), ..., W, (p) are linearly independent. Then there
exist functions a',..., a™ € C such that

det [Wy(p)(a)); B, j < m] #0.
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Let us remark that there exist real functions a/ belonging to the
differential structure of the space (U, Cy) X (I, E;), i.e. of the domain
of the mapping (1), such that

o(p(g, —t)) = &/(9)+taj(q,t) for qe U, tel.
Hence
P(*y —)ap( Wa(D)) (@?) = Wy, (p)(e/og(-, —1)) = Wi(p) (¢)) +tWy(p)(a(-, 1))
Therefore, diminishing % (if necessary), we may assume that
(15)  det[p(y =)y (Wa(®))(e?); hyj<m] #£0 for te(—n,mn).

Then there exist real functions ﬂ; of class C° on (—n, n) such that
for te(—n,n) we have

(16) Bi)o(*y —Vap(Wil)()) = 04y  hyi=1,...,m.
Let 6. be real functions on (—7, n) such that
(17) ? () Vg (Wa(o(p) —1))) = L) Wi (D).
Thus we get
Wh(‘P(Z” —t)) = Oi(t)sv(‘, _t)*p(Wl(p))'
Hence, by (16), we obtain .

BiOWale(p, —t))(a)) = BB M)@(-) —p(Wi(D)) () = 6,(2) 6 = 6;(0).

Then 6. are of class C* on (—n, 5). Applying W(p) to both sides
of (17) we obtain

(18)  65(1) = Wi@)(p(*s ) (Walo(@y —0)), By i=1,...,m.

On the other hand, by the definition of the operation X — X, we
have
(19)  Wa(W2)oa (-, thp) = (W (2)0@(*, thag) (Wal(w (2, —1)).

It follows from (14) that e;'(t) can be identified with the covector
W‘(p)o<p(-,t)*pt(Wh(qa(p, —t))). Setting for » and w in QT (M, O),

if v is in ®VT(M, 0),

h
1) _ )% (v)
(20) 7w (%) {O otherwise,

and

of - . . . (—l)
1) A (0) = {Wh('w) if wisin V"T(M, ),

0 otherwise,
by (11) we obtain

22) A, NE@)) = D Zi A () - P (e (1)
i

s
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According to (16) and (20) we have

(23) BI)YP (6 (1) = Bi (1) ak(p(+) —t)ap(Wi(p))) = 6}.
Similarly, by (19), (21), and (18) we get
(24) v (e (8) = Wi (Wi (D) o@(-y thay,) = O4(2).
From (23) and (24) it follows that
(25) Y (ef (1) = 0hs(t),
where
lﬂh if p=1,

: and  BL()BL(t) = o
6 it ou= —1, B:(6) P

Of course, det[0%;(t); h,t < m] # 0 for ¢ € (—7, n). Hence and from
(22) and (25), because of the smoothness of Z, it follows that the functions
Zy,...i,, are of class C* on (—mn, %), which proves the proposition.

4. Lie derivative of tensor fields. Let T (M, C) be an m-dimensional
space and e,, ..., ¢, a basis for it. For any tensor « of type ¢ = (¢;, ..., &)
and for 7, 8 such that 1<r<s<k and ¢e = —1 we denote

by C, ;u the tensor of type (eyy ...; & _15 &ry1y oevy 5 15 Egp1 -++y &) defined
by the equality

_ el &r—1 ‘fr+1 €s—1 S3+1
Gr,su 2 ull tk ® - Qe 7'r 1®6’r+1® ®e‘s 1®e’s+1® ®e‘k’
'r-’s

where
U, . 61Q ... Qe
.. 1lc i} %

The operation C,, is a contraction. In a particular case, taking v
in T,(M,C) and w in (T, (M, C))* as elements of ®T,(M, C), after the
contractlon C,,, of the tensor product w @v we obtain

{26) 0, (w®v) = w(v).

Let W and Y be a smcoth 1-form and a smooth vector field, respec-

tively, on some open subspace of (M, C) being of local dimension m. Then,
by (26), we have

(27) C20(WRY) =W(Y),

where W(Y)(q) = W(q)( ¥ (g)) for ¢ of this subspace.

Let us consider a differential space (M, C) being of local dimension m
at the point p and a one-parameter local Lie group (1) such that p € U.
For sufficiently small ¢, by Proposition 3.3, we have formulas (11) and (12).
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Hence
(28) F(P)Z2(@) = D Ziy. o 0€}(0)® ... ®6X(0).

il”""k

It is easy to check that the derivative of the function ¢ — ¢,(p)(Z(p,))
at the point 0 is independent of the choice of a local basis W,,..., W,,.
Therefore, we can denote it by —(£,Z)(p).

PropoOsSITION 4.1. If (M, C) i3 of local dimension m at p, then the
operation £, 18 linear, commutes with all contractions, and for any smooth

tensor fields Z and Z, of type ¢ and 7, respectively, we have
(29) (£/(Z®Z)))(p) = (£,2)(p) ®Z\(P) +Z(p)R(£,Z,)(p)-

Moreover, if W and Y are a smooth 1-form and a smooth vector field,
respectively, then

(30) (£,W)(X(p)) = (2xW(X))(p) -W([X, Y])(p),

where X i8 the vector field induced by .
Proof. It follows from (28) that

(31) (£2)P) = — D Z; (006 (0)® ... ®¢€(0).
TYseeeslp

Since the mapping (8) is linear and commutative with contractions,
so is £,. Formula (29) is also an immediate consequence of (31). Formula
(30) follows from (27), (29), and from the equality (£,Y)(p) = [X, Y1(p)
(see [6]), which completes the proof.

It follows from Proposition 4.1, because of the local character of
the operation £,, that £, depends only on the vector field X induced by ¢.
Thus we may define Lie derivative (£xZ)(p) of the tensor field Z with
respect to the vector field X at the point p as the tensor ( £,Z)(p) consid-
ered above. Indeed, for ¢ in some neighbourhood of » we have

(32) 2@ = D o o (@WiD® ... @Wik(g),
T seeerlpe

where W;(q) stands for W,(q) regarded as an element of Q®T,(M,C),
and W;'(q) is an element of ®T,(M, C) corresponding to W¢(g),
Wi(q)(Wi(q)) = 65,h,i =1,...,m. Applying the operation £,to (32) we get

(£,2)(P) = D) (£,9,.45) @)W (D)® ... ®Wi(p)+

TPseees ‘ik

;
+ Y 0@ S WED)® ... (LW (D)S ... OWE(p).
1) r=1

..... i
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Hence
(33)  (£x2)(0) = D X(p)(ay. . )Wi(D)® ... @WE(p)+
‘l"""k
k
+ Y a0 D WIS ... ®(EWN(D)® ... ®Wi(p),

$150e00lp r=1
where
(34) (£xW3)(p) = [X, W,1(p)
if 4 =1; and for any smooth vector field Y, u = —1, we get
(35) (£2W5) (Y (p)) = (0xW (X)) (p) —W (X, Y])(p).

With these remarks, Proposition 4.1 yields

THEOREM 4.1. If (M, C) is of local dimension m at the point p, then
we have the operation £x which assigns to every smooth tensor field Z of
type ¢ the tensor (£xZ)(p) defined as

1‘1_{? -1— (Z(p) — (D) (Z (9 (p, —t))))’

where the one-parameter local Lie group (1) induces X. The operation £z
18 linear, commutes with all contractions, and satisfies the formula

£x(Z®Z,)(p) = (£x2)(p)®Z,(p)+Z(p) B (£xZ,) (D).

Moreover, formula (33) together with (34) and (35) is satisfied.

Formula (33) is a different formulation of the fundamental Slebo-
dzinski’s formula [4].
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