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ON INTEGRAL TRANSFORMS OF HAAR FUNCTIONS
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Let {h,}»=, denote the normalized set of Haar functions, which form
a normalized Schauder basis for L'[0, 1] (see [5], p. 13). It was observed by
t

Ciesielski [1] that the set of functions {1, j h,(x)dx}>- is a Schauder basis for
0

C[0, 1]; in fact, these functions are simply (bounded) multiples of Schauder’s

original basis {¢,}:=0 (see [5], p. 11) for C[O0, 1]. Generalizing this result,

Radecki [4] showed that if a(x) is any positive, continuous function of
t

bounded variation on [0, 1], then the set {1, {a(x)h,(x)dx};%, is also a basis

for C[0, 11. °

In this paper we prove a result of the same type, but where a(x) is
assumed to be increasing on [0, 1] rather than continuous there (Theorem 2).
Our proof not only shows that every such set of transforms of the Haar system
is a basis for C[0, 1], but that it is actually equivalent to the Schauder basis
{¢,}n=1. Using essentially the same techniques we then also show that the
bases considered by Radecki (i.e. where a(x) is continuous, positive, and of
bounded variation) are similarly equivalent to the basis {¢,},=0 (Theorem 3).

We begin with several simple lemmas. In what follows C,[0, 1] will denote
the subspace of C[0,1] consisting of those functions which vanish at 0, and
BV[O0, 1] will denote the set of all functions of bounded variation on [0, 1].

LemMa 1. If a(x)e BV[0, 1] and feCy[0, 1], then the function

h(t) = [ a(x)df (x)

0
is in C,[0, 1].

Proof. We may assume that a(x) is increasing on [0, 1]. By the formula
for integration by parts we have

h(e) = a() f(©)— [ f(x) da(x)
0

(since f(0) =0). Fix any t,€[0, 1). Then
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lim h(e) = lim [/ (0)—  /(x) d() —  £(x) dx(x)]
0 o

+ +
-1 113

= a(td)f(to)— | f(x)da(x)—lim [ f(x)do().
0

t"la’ to

Since at and f is continuous, for any t > ¢, there exists t, €(t,, t) such that

[ f(x)da(x) = f(£,) (o(t) —ax(to)),

and where t, —»t, as t—t,. Therefore

lim | f(x)da(x) = lim f(¢,) (x(t) — a(to)) = f(to) (x(23) — (o)),

t—tolo t=to

SO

hed) = a(td)f (o) — | £x) dar(x) —f () (63 )+ (t0) o)
0

= fto)xlto)—  (x)da(x) = h(zo)
0
(by the above). Similarly, h(tg) = h(t,) for t,€(0,1], h(0*)= h(0), and

h(17) = h(1). Therefore h(t) is continuous on [0, 1], and since h(0) =0, the
lemma is proved.

It follows from Lemma 1 that for any «(x)e BV[0, 1] we can define
a linear operator T on C,[0, 1] by the formula

Tf(t) = [ a(x) df (x).
0

We note next that 7 is continuous.
LEMMA 2. If ae BV[O, 1], then T is bounded.

Proof. Let « = a, —a,, where q; is increasing on [0, 1] fori = 1, 2. As in
the proof of Lemma 1, for any ¢ we have

ITS(O)] = le(®) £(©) — § f () de(x)]
0
< le@IS @1+ I(I) f(x)day (x)] + |(I) S0 day(x)|

< la@ILSO1+ [ 1)l dory (x) + g |f(x)|doc,(x)
0

< IS llelf + 1S 1l Varoy + | f]| Vare,
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(where ||| denotes the norm and Var denotes the total variation). Therefore
ITfIl < (lell + Vara; + Varay)l| f1,

and T is bounded on C,[0, 1].
LEmMmA 3. If aeBV[0, 1], then

To, = j[a(x)h,,(x)dx for n=1,2,3, ...
(1]

Proof. For each n=1,2,3,... let I, =[a,, b,] denote the interval on
which ¢, is supported and set c, = (a,+b,)/2. If n=2*+1 for k>0 and
0 <! <?2* then by definition ¢, is linear on [a,, c,] with ¢}(x)=2* for
x€(a,, c,), and with one-sided derivatives at a, and at c, also equal to 2.
Therefore, if te[a,, c,] then

t t t t

fa(x)dg,(x) = [a(x) Pn(x)dx = [ a(x)2*dx = [a(x)h,(x)dx

0 0 an 0
(since h,(x) = 2* for x&(a,, c,) and changing the value of the integrand at a, or
¢, does not affect the value of the Riemann integral). Similarly, ¢,(x) = —2* for
x€e[c,, b}, so for te[c,, b,] we have

ia(x) dg,(x) = cfa(x) h,(x)dx+ .‘f a(x) h,(x)dx = i'a(x) h,(x)dx.
cn 0

0 an

In any case, then,

t

Tp,(t) = fa(x)h,(x)dx for te[0,1] and n=1,2,3,...

0

We now show that T is invertible as long as a is increasing and bounded
t

away from 0, and hence that the set {|a(x)h,(x)dx}, is a basis for C,[0, 1]
0
equivalent to the basis {¢,} ;.

THEOREM 1. If a(x) is increasing and a(x) = ¢ > 0 for xe€[0, 1], then the
operator T on C,[0, 1] defined by

t

Tf(t) = Ja(x)df (x)

0
is invertible.

Proof. By Lemma 2, T is continuous. As in the proof of Lemma 1,

T/ = (0~ /) dx(x) = o0 [f(t)—% J 16 da(x)],

where the function
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1 t
a0 g Sf(x)da(x)

is in the space B[0, 1] of all bounded functions on [0, 1] since a(x) = ¢ > 0 for
x in [0, 1].

Let J: Cy[0, 1]- B[O, 1] be the injection map and Q: C,[0, 1] - B[O, 1]
the operator defined by

Q1) = j)f(x) da(x).

CLAM 1. Q is a compact operator.

According to [2], p. 260, a bounded set K in B[0, 1] is relatively compact
if and only if for every ¢ > 0 there exist disjoint measurable sets {E,}7-; in
[0, 1] for which

U E;=[0, 1]
i=1
and points s; in E; for i=1, 2, ..., n such that

sup|f(s)—f(x)) <e for all feK and all i=1,2,...,n.

seE;
Since a is increasing on [0, 1], given ¢ > 0 we can partition [a(0), «(1)] into
subintervals {[y;-,, y;]}7=, of length < ¢ and define I, = a~!(y;—,, y,) and
J;=a"l(y)fori=1,2,..., m where each of these is then an interval, a point,
or the empty set. Then the collection

(4= (U o0 1)

is a disjoint collection of measurable sets in [0, 1] whose union is [0, 1]. Note
that if ¢, <t,, and both are in some A4;, then

Vara = a(t,)—a(t,) <e
[tl’IZ]

by construction. For any j = 1, 2, ..., p, choose a point s; in A;. Then if te 4
and feC,[0, 1], with || f|| <1, we have (assuming s; < t)

J

[ £69da)—{ Fx) )] = | £ )] < 1 I Varee <.

[Sj,l]

Hence by the criterion noted above the set K = {Qf: || fll <1, feC,[0, 1]} is
relatively compact in B[O, 1], and so Q is a compact operator from C,[0, 1]
into B[O, 1].
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It follows that if S: Cy[0, 1]— B[O, 1] is defined by

1
Sf() = m(Qf )(2),

then S is also compact.
CLAM 2. J—S is one-to-one.

For, if (J—S)(f) =0 for some feC,[0, 1], then Tf=a[J—-S](f)=0
also (as a function in C,[0, 1] < B[O, 1]). That is, by the above,

a(t) f(t) = ;'f(x)doz(x) for all te[0, 1].
0

Since « is increasing, by the First Mean Value Theorem for integrals for each
te[0, 1] there exists a point x, in [0, t] such that

§ f(x)da(x) = f(x,) [x(8) —a(0)].
0

Therefore for each ¢t we have

S (0
10 = L -a0n < 1) (1-2),
where a(0) = & > 0. In particular, then, for any ¢,
«(0)
1S@)] < Ilfll(l—m),

from which it follows that || f|| <(1—a(0)/x(1))]lf], a contradiction since
1 —a(0)/a(1) < 1. Hence J—S must be one-to-one.

CLAM 3. J—S is bounded below on C,[0, 1].

For, suppose || f,|| = 1 forn =1, 2, ... but |Jf,—Sf,|| =0 (in B(0, 1]). Since
S is compact, we may assume {Sf,};-,; converges to some function g, in
B[O, 1]. That is,

IJfa—Sfal—=0 and  |Sf,—gol -0,

so {Jf,}, converges to g, in B[0, 1]. Now {Jf,}=; = C,[0, 1], a closed
subset of B[O, 1], so it follows that goe C,[0, 1] as well and that {f,} then
converges to g, in C,[0, 1]. But then {Sf,},—>Sg, in B[O, 1], while we
already have {Sf,};%, =g, in B[O, 1], where g, = Jg,. That is, Sg, = Jg, or
(J—S8)go=0. But |goll =1 since |fll=1 for all n, |Jfll =/, and
{Jf}5 —g,- This contradicts the fact established above that J—S§ is
one-to-one, so it must be that J—S§ is bounded below on C,[0, 1]. Since

Tf@t) =a@®)[Jf()—Sf(t)] and a(t)=e>0 for all t,
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it follows that T is also bounded below on C,[0, 1], and hence that ran T is
some closed subspace of C,[0, 1].

CLAM 4. ran T = C,[0, 1].

. To see that this is the case first note that since {¢,}=, is a basis for
C,[0, 1], it follows (by the above) that {T¢,}, is a basis for the range of T. If
we define V: L'[0, 11— C[0, 1] by

t
Vg(t) = fa(x)g(x)dx,
0
then
t
Vh, = [a(x)h,(x)dx = T, for all n>1.
0
Since {h,}<, is a basis for L' [0, 1], the set {Vh,} >, has a linear span dense in
ran V, so it follows that the closure of the range of V is precisely ran 7. In
particular, [ran V]! = [ran T]".
Now let pe[ran V]* < C[0, 1]*, identified as the space of regular Borel
measures on [0, 1]. Then

1
[ Vg(t)du(®) =0 for all geL'[0, 1],
0

or

© Camm,

ia(x)g(x)dxdu(t) =0 for all geL![0, 1].
0

If x0.q denotes the characteristic function of [0, t], this last can be written as

Xio.g(X)a(x)g(x)dxdu(t) =0 for all ge L'[0, 1].

O Gy
O tamy =

But then a trivial application of Fubini’s Theorem ([3], p. 155) allows an
interchange of the order of these integrals and we have

1 1
fa(x)g(x) | xo.n(x)du(®)dx =0  for all geL'(0, 1].
0 0

Again, this simply says

1
fa(x)g(x)ulx, 11dx =0 for all geL'[0, 1],

0

and it follows that tﬁe function a(x) u[x, 1] must be 0 almost everywhere (w.r.t.
Lebesgue measure) on [0, 1]. Since a(x) = ¢ > 0 for all xe [0, 1], it then follows
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that u[x, 1] =0 a.e. in [0, 1], and a standard argument using the countable
additivity of the integral establishes that u(x, 1] =0 for all x >0, hence
that pu(a,b] =0 for all 0<a<b< 1 If we let f denote the norma-
lized function of bounded variation on [0, 1] associated with the measure p,
then

B(a) = u({a}), P(b)=p(0,b]=0for 0<b<1,

and
1 1
[ fx)du(x) = [ f(x)dB(x) = [—u({a})]f(0) for all f in C[O, 1].
0 0

That is, u is a multiple of the point mass d, at the point x = 0, so [ran V]*
= [d,], and by our previous discussion it follows that [ran T]* = [§,] also. In
other words, ran T= C,[0, 1], and our claim is established.

Since we have shown that T is bounded below on C,[0, 1] and that
T maps onto C,[0, 1], T is invertible on C,[0, 1] by the open mapping
theorem, and the theorem is proved. From this we get the result on integral
transforms of Haar functions we mentioned earlier:

THEOREM 2. Let a(x) be an increasing function on [0, 1] and a(x) = ¢ >0
t

for all x in [0, 1]. Then the set of functions {1, f a(x) h,(x)dx}2- y is a basis for

0
C[0, 1] which is equivalent to the basis {¢,} =o.
Proof. By Theorem 1, T is invertible. Since

t
T, = fa(x)h,(x)dx for all n>1
0

(Lemma 3) and since {@,}s=; is a basis for C,[0, 1], it follows that

t
{[a(x) h,(x)dx}, is a basis for C,[0, 1] which is equivalent to {¢,};=,. But
0

t
then since ¢,(x) = 1, it follows trivially that the set {1, [a(x)h,(x)dx};Z, is
0
a basis for C[0, 1] which is equivalent to the basis {¢,}>, and the proof is
complete.

Using an analogous argument we can also show that the bases for C [0, 1]
considered by Radecki [4] (where a(x) is taken to be a positive, continuous
function in BVT[O, 1]) are also all equivalent to Schauder’s basis {¢,} .

THEOREM 3. Let a(x) be a positive, continuous function in BV[O0, 1]. Then
1

the set {1, [a(x)h,(x)dx}>=y is a basis for C[0, 1] which is equivalent to
0

{¢n}:°=0‘
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t
Proof. The fact that {1, | «(x)h,(x)dx};=, is some basis for C[0, 1] was
0

proved by Radecki [4], as we remarked above. As in the proof of Theorem 1
we have

Tf(t) = a(t)f(t)—j'f(x)da(x) for feC,[0, 1] and all te[0, 1].
0

If we let M,: C,[0, 1]-C,[0, 1] denote the operator of multiplication on
C,[0, 1] by the function a(x), then since « is continuous and bounded away
from O, it follows that M, is invertible and, by the above, T= M,—Q, where
Q: C,[0, 1] C,[0, 1] is defined by

Qf (1) = | f(x)da(x).
0

Now it is easy to see that Q is a compact operator on C,[0, 1]. For, if
feC,[0, 1], Ifll <1, and ¢, <t,, then

12
101 (;)—Qf(t,) = || f(x)da(x)| < | 1 [Var]a = V(t,)-V(t,),

[ $1 11,02
where V is the variation function associated with a. But V is continuous on
[0, 1] since « is, and hence also uniformly continuous there. Therefore, given
e¢>0 there exists a 6 >0 such that if ¢, <t, and |t,—t,] <J, then
V(t,)—V(t,) <e, from which it follows that |Qf(t,)—Qf(t,)l < ¢ whenever
Ifll <1and|t,—t,| <,so theset {Qf: ||f] <1} isan equicontinuous subset
of C[0, 1]. Being bounded in C[0, 1], this set is then relatively compact by the
Ascoli-Arzela Theorem ([2], p. 266), and the operator Q is therefore compact
on C,[0, 1].

That is, T= M,— Q, where M, is invertible and Q is compact on C,[0, 1].

Since we observed earlier that T is one-to-one, by the Fredholm Alternative

t
T is invertible on C,[0, 1] and it follows that the basis {[ a(x)h,(x)dx}=, for
0
C[0, 1] is equivalent to {¢,}.- . But then, as in Theorem 2, it trivially follows
t
that the basis {1, a(x)h,(x)dx}>, for C[0, 1] is equivalent to the basis

1)
{@,}2 0, and the proof is complete.
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