COLLOQUIUM MATHEMATICUM

VOL. XXXII 1975 FASC. 2

MAPPING PROPERTIES OF logg’ (?)

BY

D. M. CAMPBELL (PROVO, UTAH)
AND J. A. PFALTZGRAFF (CHAPEL HILL, NORTH CAROLINA)

1. Introduction. In recent investigations of Duren and McLaughlin
(see [2] and [3]) on the Marx conjecture for starlike functions, the uni-

valence of logk’(z) and V%'(z), where k(2) = 2/(1 —2)? in the open unit
disk D = {2: |?| < 1} plays an important role. In this paper* we investigate
the problem of determining the mapping properties of logk,(z) for the

generalized Koebe function

ky(2) = Zic{(ii:)c —1} (¢ complex)

and, more generally, the question of univalence and close-to-convexity
of logg’'(2) when g¢g(2) ranges over various classes of locally univalent
functions on D. : .

One of our results shows that logk,(2) for ¢ real, |¢| > 1, maps D uni-
valently onto a starlike region. This result depends on an analysis of the
boundary behavior of logk,(z) (i.e. when |¢| =1) and of a boundary
characterization of starlike mappings that we develop in Section 2. The
boundary characterizations of starlike, convex and bounded boundary
rotation mappings in Section 2 are of interest in themselves apart from
our application in the proof of Theorem 3.1.

2. Boundary characterizations of starlikeness and bounded boundary
rotation. A function f(z) = 2+ ... analytic in D is starlike (with respect
to the origin) in D if Re[2f'(2)/f(2)] > 0 for all z in D. For a specific func-
tion f it can be quite difficult to verify that the condition Re[zf’ (2)/f(2)]
> 0 is satisfied throughout D, and the verification can involve numerous
special cases with a variety of tedious calculations for various values of
r and 0, where z = ré®. In Theorem 2.1 and Corollary 2.1 we cast the
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characterization of starlikeness in a form that often simplifies matters
by permitting one to perform simpler calculations with Re[zf (2)/f(2)]
for points z = ¢ on the boundary. The necessity of the conditions char-
acterizing starlikeness in Theorem 2.1 is known, but the proof of their
sufficiency seems to be new.

THEOREM 2.1. Let f(2) = 2+ ... be analytic in D. Then f(z) is starlike
in D if and only if the following three conditions are satisfied:

(i) f(2)/z # O for all ze D.
(ii) The harmonic function arg[f(z)/z] i8 bounded in D.
(iii) limarg[f(re®)/re®®] = V(0)— 0 ewists for all O¢[0, 2x], V(2=)—
r—»1 .
— V(0) = 2%, and V(0) i3 a monotone non-decreasing function.

Proof. The necessity of conditions (i)-(iii) is known (see [6], [9],
Lemma 1, and [11], p. 181). To prove their sufficiency, let V(6) be the
monotone function in (iii) and define the starlike function g by

g(z) = zexp{—%fnlog(l—ze‘“)dV(t)}.

Then, for all 0¢ [0, 2x],
limarg [g(re®)/re’®] = V(0)—6+¢,

r—>1

where ¢ is a constant, with the possible exception of the countable set
of points of discontinuity of V' (8) (see [9], p. 210). The function

f(2)/z
g(2)/z

is analytic, does not vanish in D, and satisfies the equalities

argh(z) = arg[f(2)/z]—arg[g(2)/z]

”

h(z) =

and

limargh(re®®) = (V(0)—0)—(V(0)—0+¢c) = —ec

r—1
for all but a countable number of points O¢ (0, 2=x]. Furthermore, argh(z)
is harmonic and bounded in D, since |arg[g(?)/z]| < =/2 (see [11], p. 181)
and condition (ii) is assumed. Thus argh(z) is constant in D since it is
the Poisson integral of its radial limit function. It follows that h(z) is
constant in D and, therefore, f(2) is a (real) constant multiple of the starlike
function ¢g(z). The proof of Theorem 2.1 is complete.

A careful analysis of the radial limits in (iii) shows that ¥V (0) is neces-
sarily equal to (V(O +)+V(6—))/2 at any point of discontinuity (see
[9], p. 210). Our next assertion gives a more flexible boundary criterion
for starlikeness.
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COROLLARY 2.1. Let f(z) =2+ ... be analytic in D, have no zeros in
0< |2|< 1, and let arg[f(z)/2] be a bounded harmonic function in D. Sup-
pose that

(1) limarg[f(re®)/re?]= V(B)— 6 exists for all ¢ [0, 2n] with V (27)—
1

s
— ¥V (0) = 2m;

(2) there is a finite set of points T = {t;: j =1,...,n}, 0<, < ...
<t,<2wm such that V(L)< VE)<V(+), j=1,...,n, and, for
all 0¢ T, V(6) = arg f(¢*°) and V(0) is continuously differentiable.

Then f(z) is starlike in D if

Re[e f (¢°)[f(€®)]1 =0 for all 04 T.

Proof. By Theorem 2.1 and hypothesis (2), it is sufficient to show
that V (0) is monotone non-decreasing in each of the intervals #; < 6 < ¢;,,
This is immediate since

0 i , ) ) :
V'(8) = 5 arg f(¢*) = Re[e“f (¢*)[f(e”)] > 0 for Be(ty, ty,,).
Remark. If f(2) is close-to-convex, then |arg[f(2)/2]] must be bounded
in D (see [11], p. 181). Frequently it is easy to verify that a particular
function is close-to-convex. We shall use this fact in Section 3.

COROLLARY 2.2. Let f(2) = 2+ ... be analytic with f'(z) % 0 and let
arg f'(2) be bounded in D. Then f(z) is convex univalent in D if and only if
limarg f’(reg) = V (6)— 6

r—1
exists for all 6e [0, 2x], V(2r)— V(0) = 2= and V (6) is a monotone non-
decreasing function.

Proof. This follows from Theorem 2.1 and the fact that f(z) is convex
if and only if 2f'(2) is starlike.

Similarly, a characterization of convexity corresponding to Corol-
lary 2.1 can be obtained by substituting f'(z2) for f(z)/z in that result.

In the next theorem we consider the class V, of analytic functions
with boundary rotation no greater than kr (cf. [7]).

THEOREM 2.2. Let f(2) = z+... be analytic with f'(2) # 0 and let
sup |arg f'(2)] < oo in D. For f(z) to be in V, it i8 necessary and sufficient
that

limarg f'{re®) = V(6)—0

r—»1
exists for all Oe[0,2n], V(2n)— V(0) = 2=« and that V(6) be a function
of bounded variation with

27
[ 1av(6)] < k.
0
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Proof. This theorem follows directly from Theorem 2.1 and Brannan’s
observation [1] that fe V, if and only if there exist univalent starllke
functions ¢g(2) and k(2) such that

I (2) = (9(2)[2)** 4R (2) /)",  zeD.

Remark. A more restrictive and geometrically less natural condition
has been given by Flett [4] who considered only univalent f(z) which
satisfy

2r

supf log* |f’ (r€%)]d6 < oo.

r<l 0

3. Mapping properties of logk,(2). The generalized Koebe function
k.(2) is of the form

k,(2) = f—g—t—z:%dw (¢ complex).

1 1+2 1 {142\
ko (2) =—log1_z and k,(?) —2_0{(1—z) —1}, ¢ #0.

In particular, for ¢ =1 and ¢ = 2 we have the familiar k,(2) =
2[(1—=z) and k,(2) = 2/(1—2)%.

THEOREM 3.1. The function f,(2) = (1/2¢)logk,(z), where ¢ # 0, 18

(1) not locally univalent if |¢| < 1;

(2) univalent and close-to-convexr if |¢| =1

(3) convex in the direction of the imaginary axis if lc| > 1

(4) convex if and only if ¢ = +1;

(5) starlike if ¢ is real and |¢c| > 1.

Proof. (1) We have

(3.1) @) = 2L 10g(14+2)— L 10g (1 —2),

and f.(2) = (1+2/e)/(1 —2?). Clearly, f,(2) is not locally univalent in D
if |¢] < 1, since f,(—e¢) = 0. .

(2) If |e| = 1, then f,(2) is close-to-convex with respect to the univalent
convex function g(z) = (1/2)log((1+2)/(1 —z)), since

Re[f.(2)/g'(2)] = Re(1+z/e) >0, zeD.
(3) If |e] =1, then.
Re[(1—2%)f.(2)] = Re(1+2/¢)> 0, zeD,

and f,(2) is convex in the direction of the imaginary axis (see [5]).
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(4) If we let Q,(2) = 1+2f; (2)/fs(2), then

(3.2) Qc(2) = 2[(¢+2) +(1+2%) /(1 —22)
w, _ T +lelreos(6—1) 1—»* B
(3.3) ReQ,(re") = o L 7eF I—rPep t = arge.

If ¢= 41 and zeD, then Q. (2) =1/(1F2), Re@,(2) > 1/2, and
fe(2) is convex (of order 1/2). For |¢| > 1 and 6 # 0, =, equation (3.3)
yields that '

Re Q.(¢*) = (1 + le|cos (8 —1))|c+ €°|~2

which is negative for values of 0 near ¢+ =. Hence, by continuity, Re Q,(z)
< 0 for some ze D. Finally, for ¢ = ¥, ¢ %« 0, =, we have

—r + 1—7*
T 1l—r | L—rp

Re Qc( — 1‘6“)

which is negative for » near 1 (2¢ # 0 (mod 2x)).

(b) Since f_,(2) = —f.(—=2) by (3.1), it will suffice to show that
f.(2) is starlike for ¢ > 1. We show that the conditions of Corollary 2.1
are satisfied with the two-point exceptional set 7' = {0, =}. The har-
monic function arg[f.(2)/2] is bounded in D sinee f,(2) is close-to-convex.

Choosing the branch of arg[f,(z)/2] that vanishes at z = 0, letting

V(0) = 64limarg[f,(re’)/re®®]
r—1
and using (3.1), we see that

V(6) = T, 0 ==,
0+11 ‘0
%0 og(l—e")|, 6 #0,m=.

c—1 .
arg [ 50 log(1 -+ €%) —

Following Duren and McLaughlin [3], we introduce the polar repre-
sentations

1—e® =V2(1—cosf) "2  0< §<2r,

V2(1 + cos 6) %, 0<0<,

146" =
V2(1-+cosh) €22, r< 6 2.

Then
£.(€%) = (1/2¢)[(c—1)log (1 + €") — (¢ +1)log(1 — )] = u(6) +4v(6),
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where
u(0) = (1/4¢)[ —log4 + (¢ —1)log(1 4 cos6) —(¢-+1)log(1 —cos8)],

0< < 2m, 0 # =,
and
(1/4¢)[(c+1)m—20], O< bO<m,

v(0) =
(1/4e)[(B—¢)m—20], =< O<2w.

It is easy to check that V(0) = arg[«(0) +v(0)] is continuous in
the interval 0 < 0 < 2%, V(04+) =0 =V (0) = V(2r—)—2n, and V(6)
is continuously differentiable in each of the intervals 0 < 6 <= and
<0< 2n.

We complete the proof by showing that V'(0) > 0 in the interval
0 < 6 < . This is sufficient because of the symmetry f,(e~*") = f,(¢*).
Clearly, v(0) is a strictly decreasing linear function in 0 < 6 < =, and
u(0) is strictly decreasing in 0 < 6 < =. Moreover,

u'(0) = —(¢c+cos)/(2¢8inh)< 0, O0<O<m.

‘We choose the branch of the inverse cotangent iwith !values inI(O, )
and write V(6) = arccot[«(0)/v(0)]. Then

V'(6) = (u(6)2'(6) —v(0)w(6))/v*(6)

is positive on n/2 <6 <, since #(6) and v(0) are decreasing and »(6) > 0
on 0< < =, and u(0) <0 on =/2 <6< w. Furthermore, V'(0) is positive
on 0 < 6 < =/2, since V'(x/2) > 0, and

d
=g (#(0)0'(6) —v()w'(0)) = —v(6)u" (6)
= —v(0)(1+eccosb)/2¢s8in?0< 0, 0<OH<T/2.

(Note that »/(0) = 0.) This completes the proof of the theorem.

Our proof of (5) is a generalization of the method used by Duren
and McLaughlin for the case ¢ = 2 (see [3], p. 272). Their proof is incom-
plete, since their observation that «(0) and v(0) both deerease in 0 < 6
< = is not enough to establish the starlikeness of the curve (u(6), v(0))
for 0 < 6 < = in the first quadrant (v > 0, » > 0) of the plane (u, v). Our
proof fills this gap and it is valid for any ¢ > 1 or ¢ < —1. We are indebted
to P. L. Duren for a comment (private communication) that motivated
us to simplify to the present form an earlier proof of ours.

The polar form f,(¢*) = u(0)+iv(6) makes it easy to see that the
starlike region f,(D) is an infinite symmetric horizontal striplike region
lying in a horizontal strip of width =n(¢+1)/(2¢) = v(0+)—v(2n—).
An illustration for ¢ = 2 appears in [3], p. 273. '
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COROLLARY 3.1. If ¢ is real and |c| > 1, then (k,(2))° is univalent in
D for all real B satisfying 0 < |B| < 2/(1+ |e]).

Proof. Because of symmetry it is enough to consider the case ¢ > 1.
The preceding remarks show that

log (k(2))° = Blogk,(2) = 2¢ff,(2)

maps D onto a region lying in the interior of a horizontal strip of width
pr(c+1) < 2n when |f| < 2/(1+¢). The exponential function is univalent
in any open horizontal strip of width no greater than 2x. Hence

(k:(2))® = exp{Blogk,(2)}

is univalent in D if 0 < |B| < 2/(1+ |e]).

This corollary extends and generalizes the Duren and MecLaughlin
result that l/k;(z) is univalent in D (see [3], p. 269). In particular, for
¢ =2, we see that (k;(2))® is univalent in D for all real § satisfying
0< Bl <2/3.

In our proof of Theorem 3.1 (5) the positive nature of »’/(6) on an
interval (where cos @ > —1/¢) and the linearity of v(6) show that the cor-
responding portions of the curve (u(6), v(0)) are convex as well as starlike.
In connection with his work on the Marx conjecture [2], Duren determined
the radius of convexity of f,(2). We can show that the radius of convexity
of f,(2) for ¢ real, |¢| > 1, is R, = Vs,, where s, is the unique root in 0 < 8
<1 of the polynomial equation

€285 + (32 —25 ¢2) 84 + (27¢* —17¢2) 8 - (9 02 —27¢) 82 —27cts +-27ct = 0.

We omit the proof which is elementary but rather tedious in some of
its details. It is interesting that B, =1 for ¢ = +1, but if |¢] > oo,
then R, — 1, rather than tending to a minimum value. (Of course,
R, = 2 —V3, since f. 18 univalent.)
This limiting behavior of R, (¢ real, |c| > 1) can be explained if we
develop one additional geometric property of the mapping f,(2). Since
1+2f;'(2)

2r 1 + 22 2%

e donge( 2)do+f
fc (z) 0 1-2 o

we see that if |¢| - oo, then f,(2) is in V, with % as close to 2 as desired.

The radius of convexity for any function in V, is at least (k—(k2—4)) /2.

Thus B, must approach 1 as |¢] — oo. Indeed, this holds true for complex
as well as real c.

2n

/

2n
le| +17

¥4

Re ad < 2n+

c+z

4. Univalence of logg’(2) for locally univalent g(z). A family of func-
tions g(2) = 2+ ..., analytic and locally univalent in D, is said to be
linear invariant if, for every Mobius transformation ¢(2) of D onto D, the
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function
g(p(2) —g(e(0) _
PO O]

is again a member of the family (cf. [10]). If M is a linear invariant family,
the order of M is defined to be

a = sup{|f’(0)/2|: fe M}.

It is always the case a > 1 (see [10]). Following Pommerenke [10],
we let %, denote the union of all linear invariant families of order at
most a. The family %, is precisely the class of all normalized univalent
convex mappings of D. The family of normalized univalent functions
in D is a proper subset of #,. Pommerenke has shown ([10], Satz 2.5)
that the radius of convexity of %, is given by the formula

(4.1) R, = a—Vat—1 = 1/(a+Va2-1).

The mapping properties of logk,(z) established in Section 3 suggest
the general problem of determining mapping properties of f(z) = logg’(2),
where

(4.2) g(z) = z+4+b22+ ...

runs over & whole family of locally univalent functions. Clearly, the uni-
valence and local univalence of f(z) are limited by the location of the
zeros of g''(z), since f'(2) = ¢''(2)/g’ (2). We shall determine the radii of
univalence and close-to-convexity of logg’(2) when g%, and lower bounds
for these quantities when ge #,. The determining factors in this work
are the modulus of b = ¢’/ (0)/2 in (4.2) and the radius of convexity in
formula (4.1).

"THEOREM 4.1. Let g(2) =2z+b22+ ... be univalent and convexr in
D (i.e. ge«,). Then f(z) = logg’(z) is univalent and close-to-convex in the
disk |2| < |b|. Furthermore, g'(z) i8 wunivalent and close-to-convexr in |2|
< |b]. The function logk,(z) with ¢ = |b| shows thatl these resulis are sharp

Proof. Our proof consists in showing that
Ref'(2) = Re[g"(2)/g’(2)]> 0

in the disk |2| < |b|. This will imply that f is close-to-convex (and hence
"univalent) with respect to the identity z — 2z, and that ¢'(2) is close-to-
-convex with respect to the convex function ¢g(2) in [2| < |b|.

Clearly, f(2) is not univalent in any neighborhood of 0 if b= g'’(0)/2
= f'(0)/2 = 0. It is sufficient to assume that 0 < b < 1. Now, if ge %,,
then

Ap[g9(2)] =

g:(2) = e“g(ze‘“) —ztbe et ..U,
lbe™%| = |b| and f,(2) = logg;(2) = f(ze™%).
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If b =1, then the uniqueness of the extremal function for the coeffi-
cient problem in %, implies that g(2) = 2/(1 —=2), and f(2) = —2log(1—=?)
which i8 univalent and convex in D.

In the case 0 < b< 1 we observe that the convexity of g(2) in D
implies that 1+2g¢''(2)/g’(2) is subordinate to (1+2)/(1—2) in D. Hence

29" (2)  1+2B(2) 14 22B(?)
g () 1—zB(z) 1—2B(z)’
where B(z) = b+b,2+ ... is analytic and |B(?2)]< 1 in D. Since B(z)

is bounded and B(0) = b, the values of B(z) for 2 in the disk |2| < r lie
in the disk

1+ ol <1,

3 'w (L—)b r(1—b?)
(4-3) \ 1—rp? 1—7r*b?
and (b—7)/(1L—7rb) < ReB(2) < (b+7r)/(L+7rb) (see [8], p. 167). The disk
(4.3) is centered at a point on the positive real axis in D and does not
contain the origin if » < b. Thus the inversion w — 1/w yields that
1 1+7b
e = tr ’
B(z) b+r
Since f'(2) = g''(2)/g9' () = 2B(2)/(1L—2B(2)) and B(z) has no zeros
in |2| <r<b, it follows that Ref'(2) will be positive in |2|<r< b if
Re[1/B(2)—2]> 0 in |2| < r < b. Inequality (4.4) implies that
[ 1 _z]> 1+rb _ 1—7
B(z)

(w complex),

(4.4) R o] <r<b.

= < b
brr r brr >0, 2l <r<b,

and establishes the result.

To show that our result is sharp note that the generalized Koebe
function k.(2) is univalent aud convex in D when 0< ¢< 1. More-
over, for f(z) = logk,(2) with ¢ = [b|, we have f'(2) = 2(z+ |b])/(X —2?),
f'(—1bl) =0, and k;(0)/2 = [b].

THEOREM 4.2. If g(2) =2+ b2®+ ... belongs to %,, then the function
f(2) =logg’ (2) is univalent and close-to-convex in the disk |z| < |b|RZ.

Proof. Suppose that g(2) = z-+b2* 4 ... belongs to #,. Then

1
9.(2) = zy(ez) =2+be?+ ...

is univalent and convex in |2| < 1 provided ¢ = R,. Hence, by Theorem 4.1,

f(o2) =logg'(g2) =logg,(2), ¢ = R,,

is univalent and close-to-convex in [2| < |b|R, and, consequently, f(2)
is univalent and close-to-convex in |z| < |b]R2.
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Theorem 4.2 is probably not sharp in the sense that one can find
a function ¢(2)e %, that is univalent in |2| < |¢'’(0)/2| R? and not univalent
in any larger disk. (P 933)
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