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It has long been believed that “finitary” lattice theory has a natural
extension to an “m-ary” lattice theory (where m is an infinite regular
cardinal): replace the requirement that all finite nonempty subsets have meets
and joins with the one that all nonempty subsets of less than m elements
have meets and joins.

It is the purpose of this paper* to carry out this program for free
products of lattices. The emphasis is twofold: laying the groundwork by
verifying all the basic results (following the exposition of free products by the
first-named author in his book [5] on general lattice theory) and pointing
out divergencies from the finitary case, thereby discovering new areas of
research that have no counterpart in the finitary case.

In the first part of the paper we find the m-ary versions of the basic
results. We also introduce and investigate two new sublattice concepts —
intact and closure sublattices — that play an important role in the m-ary
case.

0. Introduction. Throughout this paper, m is an infinite regular cardinal.
A lattice L is m-complete(') (or L is an m-lattice) if, for any nonempty S < L
with |S| < m, the join and meet of S exist in L. The concepts of m-sublattice,
m-generated, and m-homomorphism are defined in the natural way. (There is
no need to allow a singular cardinal n instead of m in these definitions
since any n-lattice is an n*-lattice and any n-homomorphism is an
n*-homomorphism; cf. [2] and [13]) For example, the -m-lattice L is
m-generated by a subset X if L is the smallest m-sublattice of L that contains
X. Whenever m is omitted, it is understood that m = N,.

* The research of both authors was supported by the N.S.E.R.C. of Canada.

(") Our usage of the term “m-complete” is different from the customary usage in the
literature.
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Let CF, (X) denote the completely free m-lattice ni-generated by a poset
X. Crawley and Dean [2] found a structure theorem for CF, (X) and showed
that if |X| < m, then CF,(X) is isomorphic to an m-sublattice of the free
m-lattice on 3 generators. Jonsson [13] proved a Normal Form Theorem for
the elements of CF,,(X) expressed as polynomials in X. This latter result has
been generalized in [8].

The free m-product of a family (L;|iel) of m-lattices is the (unique up
to isomorphism) m-lattice L generated by (J(L;|iel) such that, for
any m-lattice K and m-homomorphism ¢;: L; > K (iel), there is an
m-homomorphism ¢: L — K extending each ¢, (iel). We shall show that
most of the results in Chapter VI of Gratzer’s book [S] concerning free
products of lattices (the m = N, case) can be generalized to free m-products
of m-lattices. Our presentation will generally follow the order of [5]; we shall
emphasize the differences with the finitary (m = ;) case. (We direct the
reader to [5] for further references to the finitary case.)

Since any free m-product of finite chains is also the completely free
m-lattice m-generated by the disjoint union of these chains, we also present
some results on completely free m-lattices that complement and contrast our
results on free m-products. In particular, F,(n), the free m-lattice on n
generators, is the completely free m-lattice generated by an antichain with n
elements.

Let m"< m be an infinite regular cardinal and let & =(L;|iel) be
a family of m-lattices. Clearly, % is also a family of m'-lattices. If K is the
free m'-product of ¥ and L is the free m-product of ., the natural
m’-homomorphism ¢: K — L (that maps each L, identically) is one-to-one.
Hence, K can be considered to be a subposet of L. However, ¢ does not
necessarily preserve all existing m-joins in K. For example, if m' = R,,
m=N,, and & =(Ly, L,) with Ly =w+1 and L, = {e}, then

Vinreln<w)=wnre

in K, whereas the two sides of this equality represent distinct elements in L.
(The Structure Theorem of Section 1 can be used to verify these facts.) This
topic is studied in Section 2.

1. Free m-products of m-lattices. Considered as an algebra with in-
finitary operations, an m-lattice is a nonempty set endowed with the n-ary
operations of join and meet for each n (0 < n < m). However, following [2],
we modify the usual definition of an infinitary polynomial and use only two
infinitary operation symbols.

For an arbitrary set X, the set P, (X) of m-polynomials in X is(?) X,,
where the X, (¢ < m) are inductively defined as follows: Xo=X; if a >0

(%) Note that we identify cardinals with initial ordinals.
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and Y = {J(X,| B < ), then X, consists of all elements of Y together with all
expressions of the form \/S or /\S (considered formally), where S = Y and 0
<|S| < m. Thus, \/S and \/T are equal exactly when S =T, and \/S and
/\T are never equal. For example, if xe X, then x, \/{x}, and /\{x} are
three distinct polynomials. The rank g(p) of an m-polynomial p is the least
ordinal « such that pe X,. Note that ¢(p) < m for every m-polynomial p.

Throughout this section, L is the free m-product of the fixed family
(L;|iel) of pairwise disjoint m-lattices and X is the set J(L;|iel). We
assume that X < L. Note that x and y are incomparable in X if xeL; and
yeL; with i # j. The letters p, q, and r will always denote m-polynomials in
X. Let p denote the value of p in L; we also say that p represents p and that
p is a representation of p. Observe that p is an element of L and has
a natural inductive definition. The rank ¢(a) of ae L is the least ordinal ¢o(p),
where p represents a. (The rank of an element of L can also be defined
without reference to mi-polynomials; see [8] or [13].)

For any poset Q, Q° = QU{0, 1} is the poset obtained by adjoining
a new zero and one to Q. If 4 is an m-lattice, then A® is an m-lattice in
which 0 is m-meet-irreducible and 1 is m-join-irreducible. For iel, the lower
i-cover of p, denoted by p;, is the element of (L)’ that is obtained by
replacing in p every element from X —L; by 0 and evaluating the resulting
expression in (L;)>. We regard (L;)* as a subposet of I’; hence p,, (L)’ < L.
The upper i-cover, p, is defined dually. Let ¢: L—(L;)® be the m-homo-
morphism defined by x¢ =x if xeL, and by yp=0 if yeX—L;,. By
induction on the rank, it follows that p; =pp. We can now state the
Structure Theorem for Free m-Products:

THeoreM 1.1. Ler the m-lattice L be the free m-product of the family
(L;|ieI) of m-lattices and let X = \J(L;|iel). For p, qe P, (X), the relation
p S q holds iff it is a consequence of the following rules:

(C)  For some iel, p® < q in L,.

(AW) p=AS and s < q for some s€S.

(vW) p=\/S and s = q for all seS.

(WA) g=/\T and p<t for all teT.

(Wv) g=\/T and p<t for some teT.
(This is an inductive definition on {g(p), ¢(q)) in the lexicographic order.) The
relation p = q holds iff p< q in L.

The finitary case of Theorem 1.1 was given by Gritzer et al. [11] (see
also Jonsson [13]). To prove the Structure Theorem, we shall use essentially
the same sequence of lemmas that were used in [5] for the finitary case.

A lower or upper cover that is distinct from both 0 and 1 is called
proper.
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LemMma 1.1. For any peP,(X), py < p¥ in X® for any i, jel. Conse-
quently, if both p; and pY are proper, then i =j.

Proof. Instead of modifying the syntactical proof in [5], we give
a proof analogous to that of Jonsson [13]. Recall that p; = pp, where
¢: L— (L) is the m-homomorphism introduced before the statement of
Theorem 1.1. Let K = {aeL|ap < a in I’}. Since K contains X and K is
m-complete, we conclude that K = L. Hence p; < p in I for any pe P, (X).
Thus p;, < p<p? in I’ and, therefore, p; < p? in X°.

We next establish some properties of the relation < defined in the
statement of Theorem 1.1.

LEmMMA 1.2. Let p, q, reP,(X) and i€l. Then

@) p<p;

(i) p < q implies that p;, < g, and p® < q?;

(i) p=q and q <r imply that p<r.

Proof. (i) If ¢(p) =0, then peL,; for a unique iel. Since p = p,, = p*,
the containment p < p holds by (C). Let p = /\S. Since s s holds for all
s€§ by induction on the rank, it follows by ( A W) that AS = s for all seS.
Hence, applying (W A), we get p= AS< AS=p.

(i) If p=q by (C), then pY < g for some jel. Hence p; < gy by
Lemma 1.1. For i =) we have shown that p; <gqg. If i #j, then p; =0
since q, is proper; hence p; < g follows trivially. We now induct on
<e(p), e(9)). If p= /\S and p = q by (A W), then ¢t < q for some t€S. Hence

Piy = \ (5@ s€8) < 1) < gy

where the last inequality follows because <{o(t), o(q)> is less than
{e(p), e(@))- If p=\/S and p<q by (vW), then

piy = Vs@liel) < g

since s; < g for all seS by induction. The remaining two cases and the
case of upper covers are similar.

(i) We induct on <e(p), 0(q), e(r)) ordered lexicographically. (Any
well-ordered extension of the product order would serve.) If p < q holds by
(C), (AW), or (W), or g =r holds by (C), (W A), or (W), then the proof is
routine; thus, we assume that ¢ = \/S, that p < g holds by (W ), and that
q =r holds by (\,W). Hence p<t for some teS and s =r for all seS.
Therefore, p <t < r, and hence p < r by induction. This completes the proof
of Lemma 1.2.

By Lemma 1.2, < is a quasi-ordering. Therefore, the relation = de-
fined by .

p=q iff pcqandgcp
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is an equivalence relation. Further, R(p) = {q| p = q} is the equivalence class
containing p. Therefore, R(X) = {R(p)| pe P,.(X)} is a poset with R(p) < R(q)
iff p<=q.

LEMMA 1.3. R(X) is an m-lattice with

A{R(s)|seS} =R(A\S) and \/{R(s)|seS} =R(\/5)

whenever S = P, (X) and 0 < |S| < m. Furthermore, each L; (icl) is an
m-sublattice of R(X) in the obvious way. In other words, if x =inf Y in L;
with xeL;,, Y < L;, and 0 <|Y| < m, then R(x) = R(/\Y), and dually. Also,
R(x) # R(y) whenever x #y in X.

Proof. If p = s for all seS, then p< /S by (W A). Since A\S s for
all seS by ( A W), the first statement follows by duality. Let x =inf Y in L,.
Then x  y for all yeY and, therefore, x < /\ Y. Using (/\ Y)? = x, we see
that /\ Y < x holds by (C). Since x < y can only hold by (C), an appeal to
Lemma 1.1 completes the proof.

To complete the proof of Theorem 1.1, it remains to show that R(X) is
the free m-product of (L;|iel). Each L; is an m-sublattice of R(X) by
Lemma 1.3 and R(X) is clearly m-generated by X. Let K be an m-lattice and
let the m-homomorphisms ¢;: L; — K be given (ieI). We define y: P, (X) - K
inductively as follows: if xeL;, then xy = x¢;; if p= /\ S and sy is already
defined for each seS, then

Y = /\(sy|seS);

if p=\/S, then py is defined dually. We require the following
LEMMA 14. Let p, geP,(X) and i€l.
() If Py is proper, then pyy < py.
(i) If p® is proper, then py < pPy.
(ili) p < q implies that py < qy.
Proof. (i) If peX, then p = p;,. Hence p,y < py. If p=/\'S, then

P(i)'/’ = (/\(s(i,lseS))w = /\(S(i)'l’lses)< /\(S'I’ISES) = py.

(By induction, s; ¥ < sy for all seS.) The calculation is similar if p =\/S.
(i1) This is dual to (i).
(iii) If p < q follows by (C), then p® < g, for some iel. Applying (i) and
(i1), we obtain

P<pPY <quy <qy.

If pcq holds by (A W) with p=/\S, then s =g for some seS. Hence
p < s < q. The remaining cases are analogous.

3 — Colloquium Mathematicum XLVIIL.2
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Thus ¢ induces a map ¢: R(X) — K that extends each ¢;. If S = P,,(X)
with 0 < |S| < m, then

(AR®G)IseS) e = (R(AS) e =(AS)¥
= /\(sq/tlseS) = /\(R(s)qolseS).

We conclude that ¢ is an m-homomorphism, completing the proof of
Theorem 1.1.

We shall reformulate the Structure Theorem in terms of elements of L.
The upper and lower i-covers of elements of L have already been considered.
In particular, a; is ap, where ¢: L—(L)® is the m-homomorphism intro-
duced before the statement of Theorem 1.1. Whenever m-lattices are con-
sidered in the sequel and we write /\ S or \/S, it is to be understood that 0
< |S] < m. Further, each L, (iel) is assumed to be an m-sublattice of L.

THEOREM 1.2. Let the m-lattice L be the free m-product of the m-lattices
L,iel. Ifa= A\S<\/T=bin L, then one of the following conditions holds:

(C) For some iel, a® < by,.

(AW) s<b for some se8.

(W) a<t for some teT.

Proof. As usual, let X =J(Llie])= L. For each ueSUT, let
r,€ P, (X) represent u. We define the m-polynomials

p=/\(rlseS) and gq=\/(r|teT).

Then p and g represent a and b, respectively. Thus, by Theorem 1.1, p = q. If
(C) holds for p and g in Theorem 1.1, then (C) holds here since a® = p¥ and
b = q for iel. If (A W) applies in Theorem 1.1, then r, < g for some s€S,
and hence s < b in L. Finally, if (W /) applies, a similar argument completes
the proof. '

CoroLLARY 1.1. Let L be the free m-product of (L;|iel) as above, with
X =U;liel). No element of L—X is both m-meet-reducibile and
m-join-reducible. In other words, if a= /\S=\/T and a¢SUT, then ac X.

Proof. Consider the inequality A\S < \/T. If (A, W) holds, then s<a
for some seS and, therefore, s = a, a contradiction. Similarly, (W /) implies
that ae T. Thus, (C) must hold, implying that ae X because a < a” < g, < a.
This completes the proof of the corollary.

If L is the completely free m-lattice m-generated by a poset X, then the
Structure Theorem for L given by Crawley and Dean [2] is obtained by
replacing (C) in Theorem 1.1 by

(C) pp geX and p<gqg.
Let Lo*,L, denote the free m-product of the m-lattices L, and L,.
(As usual, m is omitted if m =N,.)
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We now consider some results whose proofs differ slightly from the
finitary case.

TueorReM 1.3 (The Splitting Theorem). If L = Ly *,, L,, then
L=(Lo]JvI[Ly).

Proof. Since the above union is an m-sublattice of L that contains the
m-generating set L, U L,, it must equal L. If the union were not disjoint,
then x > y for some xeL, and yeL,, an impossibility.

CoroLLARY 1.2. Ly, L, is the disjoint union of four sets: the smallest
convex m-sublattices containing L, and L,, respectively, (Lo] ~(L,], and
[Lo) N [Ly).

ProrosiTION 1.1. Let K; be a (possibly empty) m-sublattice of L; for iel
and let L be the free m-product of (L;|i€l). If K is the m-sublattice of L
m-generated by \J(K;|i€l), then K is a free m-product of (K;|iel, K; # Q).

Proof. If p and g are m-polynomials in {J(K;|i€l), then p = q holds in
the free m-product of (K;|ieI) exactly when it holds in the free m-product of
(Liliel).

For m-lattices and a cardinal n < m, we define three properties that are
familiar for the finitary case:

(W if AS<\/T with 0<]8S], |T| <n, then

[AS, VT]n(Su T+ 0;
(SDy) if a=b A s for all seS with 0 <|S| <n, then

a=ba\/S;
(SDY) if a=b v s for all seS with 0 <|S| <n, then
a=bv AS.

For the finitary case, each property is usually expressed with n =3,
which implies the corresponding property for n=¥N,. Observe that the
conclusion of (W,) is the disjunction of the conditions ( » W) and (W /) in
Theorem 1.2. Jonsson [13] showed that the completely free m-lattice m-
generated by a poset satisfies (W,,). From this result (or the next theorem) it
follows that any free m-lattice satisfies (W,).

A subset A4 of an m-lattice L satisfies (W,,) if (W,) holds whenever A
contains SUT. The subset A satisfies one of the (SD)-conditions if the
condition holds whenever A contains b and S. For a subset 4 of L, the free
m-product of (L;|iel), A, denotes the set {a,|acA}. The next two results
for the finitary case are due to Gritzer and Lakser [10].

THEOREM 14. Let L be the free m-product of the m-lattices L;, i€l. Let

A;, i€l, be a subset of (L)° satisfying (W,). Further, let A be a subset of L
satisfying Agu AY < A, for all iel. Then A satisfies (W,,) in L.
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Proof. Suppose that a= AS<\/T=»>b with SUT < A. We shall
apply Theorem 1.2. If a® < b; for some iel, then the set
[a®, by] N (SP U T;)) is nonempty. If, for example, s® < b with seS, then
s€[a, b]. Thus (W,) holds if (C) applies. If one of the remaining two
conditions of Theorem 1.2 applies, (W,) obviously holds. Therefore, A
satisfies (W,,).

At this point, we have generalized all theorems of Chapter VI, Section 1,
of [5] except for the last three theorems. The Normal Form Theorem of [8]
replaces Theorem 6.1.16 of [5] which involves the concept of minimal
polynomial.

THEOREM 1.5. Let L be the free m-product of the m-lattices L;, iel. Let
A;, i€l, be a subset of (L;)® satisfying (SD™,). Further, let A be a subset of L
satisfying A; < A; for all iel. Then A satisfies (SD%,).

Proof. Let a=b vs in L for each seS, where 0 <|S| <m and
{b} US = A. We can assume that a # b and a¢S. It follows that a is m-join-
reducible. Hence, by Corollary 2 of [8], there is T < L such that a=\/T
and

(i) every element of T—X is m-join-irreducible, where X =
ULliel) = L;

(ii) if te T— X, then there.is U, < L such that t = A\ U, and u £ a for
all ueU,;

(iii) if t < a; for some teT and i€l, then t = a,.

(If ae X, then we can set T = {a}.) For each seS and t e T, consider the valid
inequality ¢t < b v s. If te X, then t = a; for some i€l. Since a; = b, Vv s;
for all seS, we conclude that ay =bg v (/\S)y. If t¢X, we consider
AU, <bvs with U, as in (ii) above. Condition (C) would imply that
t < a;;, yielding a contradiction by (iii). Also, (A W) would contradict (ii).
Thus (W /) holds. Consequently, ¢t < b or t < s. Therefore, for any te T, we
obtain t<b v AS. Thus a=\/T<bv /\S, completing the proof.

The above proof is easily modified to yield a proof of the next theorem.

THEOREM 1.6. If L is the completely free m-lattice m-generated by a poset,
then L satisfies (SD%,) and (SD")).

By Theorem 1.5 or Theorem 1.6, it follows that any free m-lattice
satisfies (SD%, ) and (SD™).

The next result for the finitary case is due to Gratzer and Sichler [12].
(The lower cover of x in A is denoted by x,.)

THeoreM 1.7 (Common Refinement Property for Free m-Products). Let
L be a free m-product of Ay and A, and also of B, and B,. Theh L is a free
m-product of

(Ainlei,j=O, 1, A'mBj#®).
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Proof. As in [5], it suffices by Proposition 1.1 to show that L is
m-generated by the union of the above intersections. Let ae 4,. We shall
show that az €A, {0}. Observe that L is m-generated by B, U B,. For
notational simplicity, assume that a = p(by, b;) with b,eB; (i =0, 1). (To
attain full generality, b; should be viewed as a sequence of elements of B;.)
Then a = p((bo)ay» (b1)4,), and thus '

agy = P(bo, 0) = p((bo)ag)sy: (B1)ag)sy) = P(((Bo)ay)sys 0),

where the last equality follows from ((b,) ,)s, < (b1)s, = 0. Since p is isotone,
ag, = P((bo)a,, 0) is an element of (4o N Bo) U {0}. Thus a = p((bo) 4y, (b1)4,)
and A, is m-generated by (4, N By) V(4o N By).

2. Intact and closure sublattices. Let A be a (possibly empty) subposet of
B. We call A an intact sublattice of B if all existing joins and meets (of
nonempty subsets) in A are preserved (remain intact) in B. (Neither A nor B
need to be complete.) We form

B*=Bu{0,1} and A*=A40{0,1}.

The element b, € A® is the lower A-cover of beB® if, for all acA, a< b, is
equivalent to a < b. In particular, b, is uniquely determined by b if it exists
and b, < b. Upper A-covers are defined dually. A is called a closure sublattice
of B if each element of B has a lower and an upper A-cover. If 4 and C are
m-lattices, then we know that A is a closure sublattice of 4 *,C. This
example motivates the definition and allows us to use the same terminology
and notation for covers. Trivial examples of closure sublattices are A = @, 4
=B, and A a finite chain. Observe that being a closure sublattice is
a transitive property.

If A is a closure sublattice of B, then A is an intact sublattice of B.
Indeed, if @ # S = A, c =sup S, be B is an upper bound of S, and b, exists,

A

then
c=sup S<sup((b]nA4)=b,<b.
A A

Let @ # S = A and suppose that A is a closure sublattice of B.If b = sup A, then
B
b=b,=supS.
. A

Thus, a closure sublattice of an m-lattice is m-complete. Also, observe that if
u is the unit of B and A is a closure sublattice of B, then u, is the unit of A4.

The next two theorems show that closure sublattices occur naturally in
both free m-products and completely free m-lattices. In the proofs that
follow, P%(X) will denote the result of adding a new element 0 to P, (X).
Also, in this context, \/ © =0.
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THEOREM 2.1. Let L;, i€l, be m-lattices, let K; be a (possibly empty)
closure sublattice of L; for i€l, and let L be the free m-product of (L;|i€l). If
K is the m-sublattice of L m-generated by \J(K;|i€l), then K is a closure
sublattice of L.

Proof. Let X = U(L liel) and Y = |J(K,|ie]). Since Y < X, we have

P2(Y) < P°(X). For qe P%(X), we inductively define q'e P%(Y) as follows:
@ 0 =0;

(i) x’ = Xk, if xelL;;

(iii) if g=\/T, then ¢' = \/(t'|t' #0, teT);

(iv) if ¢ = /AT, then

,_{ A |teT) if ¢ #0 for all teT,
=70 otherwise.

If beL is represented by ge P, (X), we shall show that ¢’ represents by
in L. (Hence, by duality, K is a closure sublattice of L.) Since q "e PA(Y), it
represents an element of K U {0}. It is easily shown that ¢’ =g for .all
g€ P2(X). (The relation = on P2(X) is for the free product L) Let xeL; and
x = q with iel and geP,(X). By induction on the rank of g, it is easily
shown that x,, = ¢'.

Let peP,,,(Y) qu,,,(X), and p < q. We show, by induction on the ranks
of p and ¢, that p < q'. If (C) applies to P< c g, then p¥ < g in L; for some
iel. Since g, < g, (), We have p = q'. The cases p=\/S (respectively,
p=/\S) and s = q for all (respectively, for some) seS are left to the reader.
If g=\/T and p <t for some teT, then p <t by induction. Thus,

ps\V({|t#0,teT) =4

The final case, g = /\ T, is similar.

THEOREM 2.2. Let Y be a subset of an m-lattice L such that 0 <|Y| < m.
We consider two conditions on L and Y:

() L is the free m-product of a family (L;|iel) of wm-lattices,
X =(L;)iel) € L, and each element of Y is incomparable with each element
of X. (Equivalently, the i-covers of each element of Y are improper for all iel.)

(B) L is the completely free m-lattice m-generated by a poset X.

If L and Y satisfy (a) or (B) and K is the m-sublattice of L m-generated
by Y, then K is a closure sublattice of L.

Proof. Choose a map from Y to P,(X) so that each element of Y is
represented in 'L by its image under this map. Let ¢: P°(Y) — P%(X) be the
obvious extension of this map satisfying 0p = 0. Let ge P%(X). We set

g* =\/(yeY|yp = q).
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Since |Y| < m, we have g* e P%(Y). If we assume (x), then x* = 0 whenever
xeX. We inductively define q’'e P2(Y) as follows:
(i) 0=0;
(i) x'=x* if xeX;
(iii) if g =\/ T, then

, _Ja*v\/({|t#0,teT) if ¢ #0 for some teT,
7= q* otherwise;

(iv) if g = /\ T, then

,_{ A('|teT) if ¢ #0 for all teT,
1= 0 otherwise.

If beL is represented by g€ P, (X), we shall show that g’ ¢ represents by
in L. (Hence, by duality, K is a closure sublattice of L) Clearly, q' ¢
represents an element of K®. It is easily shown that g* ¢ < q' ¢ < q for all
g€ P°(X).

Let peP,(Y), geP,(X), and pp < q. We show, by induction on the
ranks of p and q, that pp = ¢’ ¢. If peY, then pp < q* ¢ = q’ 9. In case (a),
(pp)? =1 for all iel and, consequently, (C) cannot apply to pp <gq. (In
particular, q¢ X.) Next, suppose (f) holds and ge X. If p=\/S (respectively,
p=/\S), then sp =q for all (respectively, for some) se€S. The relation
pe < qp now follows easily by induction. Henceforth, we assume that either
(a) or (B) holds. If p is a join or g is a meet, the relation pp < g’ ¢ is easily
derived. We can assume that p¢Y, p= /\S, g =\/T, and either (A W) or
(W) applies to pp = g. In the first case, s¢p =< q for some seS. Hence
pe S s@ < q @. Otherwise, pp <t for some te T and, consequently,
pp =t ¢ < q ¢. This completes the proof of Theorem 2.2.

CoroLLARY 2.1. If Y is any poset with 0 <|Y| <m, then CF,(Y) is
isomorphic to a closure sublattice of F,(3).

Proof. Crawley and Dean [2] have shown that CF, (Y) is isomorphic
to an m-sublattice K of F,(3). By Theorem 2.2 (8), K is a closure sublattice
of F,.(3).

Remarks. 1. By Proposition 1.1, the m-lattice K in Theoerem 2.1 is
a free m-product of (K;|iel, K; # O).

2. It follows from the proof that the m-lattice K in Theorem 2.2 must
satisfy (W,,). (Of course, in (B), this is obvious since L satisfies (W,,) by [13].)

3. The restriction |Y]| < m is necessary in Corollary 2.1: this statement
may fail for |Y| = m. For example, K =F,(m) is an m-sublattice of
L = F, (3) by [2], but it follows by an observation made before Theorem 2.1
that K cannot be a closure sublattice of L because K has no unit.
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