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Let f be a real-valued function defined on an interval and let E be
the set of points # where the ordinary derivative f'(x) exists. The purpose
of this paper is to prove the following

THEOREM. Assume that f has an approxvimate derivative f,,(x) (finite
or infinite) at every x and satisfies the condition that at each x at which lim f(t)

oz~

or lim f(t) exists the limit is equal to f(x). If A i a real number such that
s+
{@: fap(®) = A} # O, then
(w2 fio(e) = 0B £0.

This theorem seems slightly stronger than that obtained by O’Mal-
ley [3]. However, the lack of approximate continuity makes the proof
much more complicated.

The concepts that we use in this paper can be found in [6]. To prove
our theorem, we need the following lemmas which are consequences of
Theorems 3, 4, 6 in [4] and Theorem 2 in [1].

LEMMA 1. f,, i8¢ & Darboux fundtion of Baire class 1.

LeMMA 2. If f,, i8 bounded from above or from below on an interval,
then f,, = f’ there.

Proof of the Theorem. For simplicity, noting that the function
J(«) — Az satisfies all conditions set for f, we assume without loss of gen-
erality that f is defined on [0,1] and 4 = 0.

Let F denote the set of points & such that either f,, is unbounded
both from above and below on [z, # + 8) for every é > 0 or f,,',p is unbounded
both from above and below on (z—d,2] for every 4 > 0 and let @
= [0, 1]— F. Clearly, @ is open in [0, 1] and F is closed. Moreover, owing
to Lemma 2 and the assumption that f,,(z) exists at every z, we see that
GcE. If F =0, then ¥ =G = [0,1] and there is nothing to prove.
If F + @ and F has an isolated point z,, then there exists a é > 0 such
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that (xo— 8, 2o+ 6)NF is the single point. z, and f,, is unbounded both
from above and below on either [z, x,+ d) or (z,— d, 2,]. In view of
Lemma 1, f,, takes all real values on either (z,, x,+ 8) or (z,— 8, x,).
It follows that there exists a point

@ € ((@o— 8, To)U (@, %+ 8))N[0,1] = G = B
such that f,(#) = 0 and this is what we want. Now, we assume that F"
is a perfect set. By Lemma 1, f;, is a function of Baire class 1, and hence
there exists a point &, in N (0, 1) such that
im fo(2) = fap(&0)

z—§p,2eF
(finite or infinite).

Case 1. fi,(&,) > 0. There exists a 6 > 0 such that f,,(x) > 0 when-
ever |z — &y < 8 and x € F. On the other hand, since &, € F', there exists.
a £, such that |&, — &,| < 6 and f;,(&;) < 0. Thus &, €@ and ¢, is contained
in some component C of @&. This component C is an open (relative to [0, 1])
interval with one endpoint lying between £, and &, or equal to the point &,.
We denote this endpoint by &, and find that |£,— &| < 8 and &, € F. There-
fore, we have f,,(£;) <0 <f,,(£,). Since f,, is a Darboux function, there
cxists a & lying between &, and &, such that f, (&) = 0. Clearly,
£,€e(C c G c E. It follows that

{x: fop(®) =0}NE + 0.
Case 2. f,, (&) < 0. The proof is similar to that in Case 1.

Case 3. fay(&) = 0. There exists a 8 > 0 such that |f;,(x)| < 1 when-
ever [x —&y| < 6 and x € F. Let

I,=[0,11Nn[5—0,&+0] and @ = {zel,: fa’p(w) = 0}.

If QNG +# 9, then QN E # O and our conclusion of the theorem fol-
lows. Suppose that QNG = @; then @ = F. Since also @ = I, and I,NnF
is a closed set, we see that Q@ < I,NnF, @ being the closure of . Therefore,
x € @ implies |f,, (%) < 1. Let

K = {z el,: f,,(») is finite};

we have @ = K. Clearly, & € Q I, where I] denotes the interior of I,.
We may choose a smaller I,, if necessary, so that the endpoints of I,
are not isolated points of @. If @ has an isolated point z;, then x; € I
and there exists a § > 0 such that

(@;— 0, @)U (;, 2+ 0) = I, —Q.

By Lemma 1, we have either f,, >0 on (x;— 6, %) or f,, <0 on
(@;— 6, x;), and hence f,, is either bounded from below or bounded from
above on (#;— 9, 2;]. By Lemma 2, f,, = f' there, in particular, f~ ()
= fap(®;) = 0, where f~(x;) is the left-hand ordinary derivative at ;.
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Similarly, f*(«;) being the right-hand ordinary derivative at x;, we have
St (x) = fip(2;) = 0. Thus there exists a derivative f'(«;) = 0. It remains
to show the case where @ has no isolated point or, in other words, @ is
perfect. The rest of the proof is based on the following

LEMMA 3. Let I, be any closed subinterval of I, given above. For
£> 0, x € I, and a positive integer n, let

B(z,e) ={y €1,: |f(y)—f(®)| < ely — 2!}
and

2
H,(¢) ={weII: [B(x, e)Nd| >§|J| for every J < I,
such that x € J and |J| < %},

where |-| means the Lebesgue measure of the set inside the bars. Then we
have

(a) If x, y are in H;(—s)nK with |x—1y| < 1/n, then
If(y)—f(2)] < 3ely —=|.
() If xe H,(e)NK, then
|B(z, 3e)nd| > }|J|

for every J < I, with v € J and |J| < 1/n.

This lemma plays the same role as the lemma that O’Malley stated
in [3], but it is different from the latter. The proof of the lemma above
should be easier than O’Malley’s. However, to make it clear, we sketch
the proof of Lemma 3 as follows:

The conclusion (a) follows from (b) easily. It suffices to prove (b).
Let ¢ and n be fixed and 2 € H,(e)NK.

Case (i). There exists a strictly decreasing sequence {x;} in H,(s)
with limit 2 and 0 < ;,—2 < 1/n. We break the proof into five steps.

Step I. B(x, ) has a positive upper density at z for each k.

Proof. For fixed k and each positive integer j, the interval [z, ;, ;]
has length less than 1/n and contains the points #;,; and «;, which are in
the set H,(¢). It can be shown that
1) 1f(@45) — (@) < G(wk—“’k+j) .

With the aid of (1), we can show that

B(xy, )N [2, B45] 2 By, ) N [2, 245].
Thus

, 2
lB(mk, 8) N [z, wk-l-j]l > E (wk+j —Z).



158 H. H. PU AND H. W. PU

Since x,,; -2 as j - oo, B(x;,6) has an upper density at least
2/3 at 2.

Step IL |f(z) —f(x,)| < (@, —2) for each k.

Proof. z € K implies that f is approximately continuous at z. There
exists a measurable set A such that A has density 1 at z and

'ze f(@) = f(2).

Z—»8,2€A4

For fixed k, AnB(x,, ¢) has a positive upper density at 2 and
If (@) —f(@)l < ely—a,] for every y € AnB(wy, s).
Keeping y € AnB(x,, ¢) and letting y — 2, we obtain

(2) |f(2) —f (@) < (@ —2).
Step III. For every 6 € (0, 1/n) such that 2+ 6 € I, we have
(3) B(z, 3¢) n [, 2+ 8] > $8.

Proof. Let such J be given; then there exists a ko such that 2, < 2+6
for all k> k,. If y € B(x;, ¢) and y > x,, then

1f(y) =S (@) < e(y — ).
We see from this and (2) that
If(y)—f(2)| < e(y—=2) for y e B(w, &) N [%, 2+ 8]
whenever %k > k,. Hence for k >k,
B(z, &) N [z, 2+ 8] o B(xy, &) N [@, 2+ 0]
and
2
|B(2,¢) N[z, 2+ 6] > -g(z+ 0—ay).
Let k¥ — oo; then
2 1
|B(z, e)n [2,2+ 6]123-6 >§- 0.

Since B(z, 3¢) > B(z, ¢), we- have (3).
Step IV. For every 6 € (0,1/n) such that z— 6 € I, we have

|B(2, 3¢) N [2— 9, 2]| > 34.

Remark. The first three steps are parallel to the proof of a lemma in
[2] (p. 86-86). The statement of Step IV is analogous to that of Step III,
but the proof is not similar at all.

Proof of Step IV. Let 6 €(0,1/n) with 2— 6 €I, be given; then
there exists a k; such that 0 < x,—2 < min{l/n— 4, 6/8} for all k > k,.
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Fix any k> k,; [2— d, ] is a closed interval in I, containing x, with
length less than 1/n, and hence

2
AB(@y,y e) N [2— 6, ;]| >'§'(wk—z+ d).

Noting that 2—d0<2—6/8 <2<, <2+ 48/8, we see that

w,,-—(z—-g-)<(z+§) —(z—g) =%6 =%(z—(z—6))

1 2
<-Z(:vk—z+ d) <—§(w,,—z+ d).

Hence there exists a y € B(xy, ¢)n[2— 8,2 — 8/8). That is, there
exists a y e [#— J,2— 6/8) with

F@)—f(z)l < e(@,—y) = e(x,—2)+8(2—y).

In view of (2), we obtain
- é
1F(9) —F(2)] < 2e(m—2)+ e(2—y) < 28§ +e(2—y) < 3s(2—y),

that is, y € B(z, 3¢). More precisely,
1
B(z,3¢)n[z—d,7] :B(w,,,s)n[z—é, z—gé)
1
= B(wk, s)f'\ [z— 6, wk]—B(.’L'k, B)n[z—'s—(s, .'D,‘].

Thus

|B(z, 3e)N [#— 8, ]| = |B(xy, )N [#— b, z;]| — (w,,—z-{-%é)

2 1 2 1 1
—(tp,—2+0)— |2 —2+ =0 =|— ——| 0 — —(x,, —
>3(w,, 2+ 0) (w,, z—l—S) (3 8)6 3(:1:,, 2)
2 1 11 1

— — — 6__0_ e — N
>(3 8) 3 8(s 26

Step V. The conclusion (b) holds.

This is immediate from Steps III and IV.

Case (ii). There is no strictly decreasing sequence in H,(e) with
limit 2. If 2 € H, (¢), then the conclusion (b) is obvious. If z ¢ H,(¢), then
there must be a strictly increasing sequence in H, (¢) with limit 2. The
proof is similar to the above one. Thus the lemma is proved.

Now we return to the proof of our theorem. We are dealing with the
case where @ is a perfect set. Using Lemma 3 and recalling that @ < K,
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‘we check easily that the proof differs very little from that given by O’Mal-
ley in [3]. Therefore, we choose to omit the details.

COROLLARY. Let f, defined on [a, b], satisfy the conditions of our theorem.
Then there exists an x, € (a, b) such that f is differentiable there and f(b)—
—f(a) = f' (@) (b—a).

Proof. Under our conditions, Preiss proved a mean value theorem
([4]}, Theorem 6). This corollary follows readily from this mean value
‘theorem and our theorem above. It is a strong form of the former.
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