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1. Introduction. In this paper we consider a Denjoy type of Stiel-

tjes integral, the ADS-integral, defined descriptively by the method of
Saks (cf. [12], p. 241), using the concept of approximate derivative with
respect to a non-decreasing function w. A similar integral has been con-
sidered by Ridder [11], but he assumes that the monotone function a
associated with « is continuous.

In a recent paper Kubota [8] has shown that the approximately
continuous Denjoy integral defined by him is the least general among
the approximately continuous integrals having the Cauchy and Harnack
properties and including the Lebesgue integral (cf. [9], Theorem 4). Here

we shall establish the analogous property of the ADS-integral (w).

2. Preliminaries. Let » be a finite non-decreasing function defined
on the real line X. Let S denote the set of points of continuity of w and
D = X\ 8. Then D is at most countable. Let S, denote the union of
pairwise disjoint open intervals on each of which w is constant, let
and 8; denote the left and the right end points of all such intervals, re-
spectively, and S, = 8, US;.

Let € denote the family of open intervals (a, b) and the empty set @..
Then the non-negative set function 7, defined on ¢ by r(4) = 0 and z(a, b)
= w(b—)—w(a+), determines the “method I outer measure” (see [10],
" p. 90) o* defined for E c X by '

o*(E) = inf] 3'2(1,): kQ I, > E, I,<%}.

k=1

It can be easily shown by using Theorem 13.8 of [10] that o* is
a metric outer measure, so that Borel sets are measurable (v*) (see [10],
Corollary 13.2.1, p. 104), and hence o* is regular (see [10], Corollary
12.3.1, p. 98).
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Definition 2.1. Let A <« X. For x <y, we write
o*(AN(z, y))/o* (@, y] i o*(x,y] #0,
d(z,y) =10 if An(z,y] =0,
1 otherwise.

Then lim d(x, y), if it exists, is the right »*-density of A at x. The left
y—z+

w*-density of A at x is defined analogously. If the right and left »*-densities
of A at x exist and are equal, the common value is the w*-density of A
at . If A has w*-density 1 or 0 at z, then x is called, accordingly, a point
of density (o) or a point of dispersion («¥) of A.

Two sets A and B are w-separated (see [3], p. 347) if, for every ¢ > 0,
there exist open sets G; > 4 and @, o B with 0*(G,NG,) < «.

Proceeding, with minor modifications, as in Theorems 2.20, 5.2,
5.4 of [6] (p. 59, 114 and 116, respectively) and using Lemma 2 of [5],
we get

THEOREM 2.1. If A and B are w-separated and AU B is measurable
(w*), then A and B are also measurable (o*). If A = 8, then A has o*-
density unity a.e. (0*)on A. If ANB < 8 and A has o*-density 0 a.e. (w*)
.on B, then A and B are w-separated.

Definition 2.2. Let f be an extended real-valued function defined
.on A < X and let {eX be given. The g.1.b. of real numbers k for which
‘the set

{w:2xeA, 2> &, f(x)> k}

‘has w*-density 0 at & is denoted by f,(£+) and called the upper right
w-approximate limit of f at & The l.u.b. of real numbers k for which the set

{:2zed, x> &, f(x) < k}
‘has o*-density 0 at & is denoted by f,(&é+) and called the lower right

«w-approvimate limit of f at & If f,(£+) = f.(£+), the common value

is denoted by f,(£+) and it is called the right w-approzimate limit of f
abt &. The symbols f,(&—), fw(f—) and f,(§—) have analogous meaning.

When £¢A, f is said to be w-approximately continuous at & if

folé—=) =f,(E+) =f(&) # L o0

-Or
$[fulE=)+SfulE+)] =F(&) # £ o0

according to as £eS or &eD.
Using Theorem 2.1 and the theorem of Lusin (ef. [12], p. 72) as in
‘the Lebesgue case, with obvious modifications, we get
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THEOREM 2.2. A finite function f defined on an w*-measurable set A
is measurable (w*) if and only if [ is w-approximately continuous a.e. (w*)
on ANnS. And if f,(x—) and f,(x+) exist finitely for every xe[a, b], then,

Jor every &e[a, b], there exists a closed set A, such that the complement A,
has w*-density 0 at &, and f,(x+) and f,(x —) are, respectively, the ordinary
right-hand and left-hand limits of f at x relative to AN [a, b] for every xzeA,.

We denote by &%, the family of finite functions f defined on X such
that f, (& —) and f,(&+) exist finitely at each point £eD. If fe#,, we de-

note by f the function which coincides with f on 8, and if £eD, then

Definition 2.3. Let fe#, and §¢X be given. Write

[f(@)—f(&))][0@) —d(5)] i o) £ o),

£ 0) =
v(f, & 2) 0 otherwise.

Then
lim p(f, &;2) = fu(£),
ot .

if it exists, is the w-derivative of f at &. The approximate upper and lower
right or left w-derivatives of f at & are defined and denoted by

AD*f, (&) = yaolfy £56+)  and  AD,fo(&) = y.(f; & &+)
or

ADf, (&) = yo(f, £56—) and  AD_f.(8) = p.(f, & §—).
If
AD*f,(§) = AD,f,(§) = AD™f,(§) = AD_f.(§),

the common value is the approvimate w-derivative (apf. (&)) of f at &.
It can be easily seen that, for fe #, and £eD,

apfo(£) = [fulé+)—Jfol(é—))/[w(é+)—w(E—)].

Definition 2.4. Let fe#,, f, () =f,(®+) and f_(x) = f,(z—)
if xeD, and f () = f_(x) = f(x) if xe8. For any interval I with the end
points & and ' (z < '), write

fe@)—f-(@) i I=[a]
J-@)—fi(x) i I=(x,4),
f+(w')_f+(w) if I = (z,4'],
Jo@)—f-(») i I=[x2).

Then f is said to be AC-w on a set E < X if, for every ¢ > 0, there
exists a 6 > 0 such that, for any set of pairwise disjoint intervals {I,}

J(I) =

8 — Colloquium Mathematicum XXVIII.1
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with end points on F and with D w(I;) < 8, we have D' |f(I,)| < e. The
function f is ACG-w on F if E is the union of a countable number of closed
sets on each of which f is AC-o.

Note. Jeffery [6] denotes by # the class of functions f, defined and
continuous on SN[a, b], such that the unilateral limits f(£ —) and f(&+)
exist for every &eDnN[a,b], and f(z) = f(a+) or f(b—) according to as
xz < a or x > b. We may, however, define

f®) = 3[f(x—)+f(x+)] for xeD

so that # < &#,. Our definition of w-derivative is different from that of
Jeffery [5]. However, for fe, it is easy to see that if f, (x) exists in one
sense, then it exists in the other sense and they have the same value.
If f =;‘e %,18 AC-0 on [a, b] and [a, ] < (a, b), then, clearly, f is AC-o
on [a, #] in the sense of Jeffery (see [5], Definition 1), and hence (see [2],
Theorem 3.1, and [5], Theorem 2) f. is Lebesgue-Stieltjes integrable (o)
on [a, ] and

B
(1) f(B+)—fla—) = (L8) [ fido.

- THEOREM 2.3 (cf. [2], Theorem 3.2). A function FeF,, which is
ACG-w on a set E, fulfills condition (Nw), i.e. for every H < E with o*(H)
= 0, the Lebesgue measure |F[H]| of F[H] is zero.

This theorem is a generalization of Theorem 6.1 in [12], p. 225. Clearly,
it is sufficient to prove the theorem under the hypothesis that F is bounded

and AC-w on E. Also, o*(H) = 0 implies that H c S. Noting these, the
theorem can be proved in a way analogous to the proof of Lemma 2.1
in [7].

THEOREM 2.4 (cf. [12], Theorem 7.1, p. 203, and [7], Lemma 2.2).
Let F be a finite function defined on [a, b] and such that

(i) Foo—) < F(2) < Fo(a+) for every wela,b],

(ii) F'[E] does not contain any interval, where E denotes the set of points
&e(a, b) such that F (x) < F (&) in some right neighbourhood of &.

Then F ts non-decreasing on [a, b].

Proof. We first show that F is non-decreasing on each interval
[a, B] = (Sou8;)N][a, b].
Choose &> 0 arbitrarily. Then
F(a)—e<y,< F(a) for some y,¢ F[E].
Let
§ = sup{x: we[a, B], F(x) > y,}.
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Since ¥y, < F(a)< F,(a+), the set {r:ze(a,p), F(x)<y,} has
o*-density 0 at a. This implies, as »*(a, 8) = 0, that F(x) > y, in some
right neighbourhood of a. Thus a < § < . If we assume that F(¢) < y,,
then, by hypothesis, F,(£—) < ¥,, 80 that the set {w: ze(a, &), F(x) > 9o}
has o*-density 0 at & This implies, as w*(a, £) = 0, that F(x) <y, in
some left neighbourhood of &, which contradicts the definition of ¢&.
Thus we must have F (&) > y,. Now, if we assume that ¢ < 8, then F(x)
<y, for all ze(§ B). This implies F (&)< F, (E+)<y,, so that
F (&) = vy,, which contradicts that y,¢F[E]. Thus we have & = f and,
consequently, F(B) > y, > F'(a) —¢. Since ¢ > 0 is arbitrary, we conclude
that F () > F(a).

We now consider the general case. Suppose, if possible, that F(d,)
< F(c,) while a < ¢y < dy<b. Then there is y,¢F[F] such that F(d,)
< Yo < F(c,). We write

A = {z:we[Cyy o], F(2) > Yo}, B = {w:@e[coy dy], F() > 1}

Then A <« B and c¢yed, and, for every ze¢A, we have y, < F(x)
< F,(x+), so that A has right »*-density 1 at . Now, starting with ¢,
we can choose in AN[¢,, d,] a strictly increasing sequence {c,} such that

(2) w*(Ah(cn_l,cn])>%w*(cn_l,cn], n=1,2,..,

equality holding only if w*(¢,_,,¢,] = 0. Let ¢,—~a (a<d,). Then, as
c,eA < B, we get from (2)

(3) w*(Bn[cn,a))>%w*[cn, a), n=0,1,2,...,

equality holding only if o*[e¢,, a] = 0. Relation (3) implies that a is not
a point of dispersion (w*) of BN[cy, a]. So we conclude from hypothesis (i)
that y, < F,(a—) < F(a). If a = dy, we have a contradiction. Now let
a < dy. If 0*[ey, @) = 0, then, by the first part of the proof, we get F(a)
> F(cy) > y,. Therefore, if F(a) = y,, then (3) gives

w*(Bﬁ[Oo, al]) > %W* [0, @],
and hence, as F(a) = y,¢ F[F], there is a’'e AN(a, d,) with
w*(Bn[co, a')) > to*[6, a').

Let ay = a or o’ according to as F(a) is greater or equal to y,. Then
aoeA and

w*(Bﬂ[Oo, ao)) = %w* [007 aO)’

equality holding only if w*[¢y, @) = 0. The process can be repeated with q,,
and carrying on the process the point d, must be reached in a countable
number of steps (cf. [4], Section 79, p. 115), and thus we get F(d,) > v,.
This final contradiction establishes the theorem.
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3. The m-integral (w)e

Definition 3.1 (¢f. [5], Definition 7). Let the function f be finite
a.e. (w*) on [a, b] and suppose that there exists a function F ¢#, such
that

(i) F' is w-approximately continuous at each point of [a, b],

(ii) F is ACG-w on [a, b],

(iii) ap F,(x) = f(x) a.e. (»*) on [a, b].

Then f is said to be integrable on [a, b] in the w-approximately con-
tinuous Denjoy-Stieltjes sense; F is called an indefinite ADS-integral (w)
of f on [a,b] and we write

b

ﬁffdw — F(b)— F(a).

a

Definition 3.1 is justified by the following theorem:

THEOREM 3.1. If P and M are any two indefinite Es-integmls (w)
of f on [a, b], then P(b)—P(a) = M(b)— M/ a).

Proof. Let ¢> 0 be given. Write F(x) = P(x)—M(z)+ew(x).
Then, clearly, F' is w-approximately continuous on [a, b]. Now, let £e DN
N[a, b]. Then

apP, (&) = f(§) = apM,(£),

and so

(4) P, (E+)—Pu(E—) = M, (E+)—M,(&§—).
Also we have

(5) Fo(E+) = Po(E+)—My(§+)+ e (E+),

Fo(é—) =P, (§—)—M,({—)+ew(E—).
Using (4) and (5), we easily deduce that
F,(§—)< F(§) < Fyu(&+).

Thus F satisfies condition (i) of Theorem 2.4 on [a, b]. Again, ap F,, ()
—¢> 0 a.e. (0*) on [a, b]. Consequently, the set

E, = {#:z¢(a, b), AD*F, (2) < 0}

is of w-measure zero. Obviously, E, includes the set E defined in The-

orem 2.4. Therefore, »*(E) = 0. But F is, clearly, ACG-w on [a, b]. So,
by Theorem 2.3, |F[E]| = 0 and, hence, F[E] does not contain any
interval. Hence, by Theorem 2.4, we get

P(b)— M (b)+e0 (b) = P(a) —M (a) + e (a)



whence it follows that

(6) P(b)—P(a) = M(b)—M(a).
Interchanging P and M in (6), we have

(7) M (b) —M(a) > P(b)—P(a).

Combining (6) and (7), we get the theorem.
Definition 3.2. Given a function f defined on [a, b], we write

wi(®) = f(@)[w(®+)—w(®x—)] on DnN[a,b] and 0 elsewhere.
As a direct consequence of Definition 3.1, we get

THEOREM 3.2. Let f and g be ADS-integrable (w) on [a, b].

1) If f(x) = h(z) a.e. (o) on [a, b], then h i3 ATS-integmble (w)
on [a, b], and

b b
ADS [ fdo = ADS [ hdo.
a a
(i) If A and pu are finite constants, then Af-+ ug is ADS-integrable
(w) on [a,bd], and

. b I - b
ADS [ (Af+ pg)do = 4-ADS [ fdw+ p-ADS [ gdo.
a a a

(iii) If a<e< b, then f is ADS-integrable (w) on [a, c] and [e, b],
and

b b
ADS [ fdw = ADS [ fiw + DS [ fio.
a a ¢

— ¢ ___ b
THEOREM 3.3. If ADS [ fdw and ADS [ fdo ewist, then ADS [ fdw
a c a

erists.
Proof. Let P and M be indefinite Kﬁ@-integrals (w) of f on [e¢, b]
and [a, c], respectively. Let F be defined by

P(z)—P(ec) if > ¢,
F(z) =
\M(@x)—M(e) if z<e.
Suppose that ceD. Noting that apP)(c) = f(¢) = apM,(c), we get
(8) Pw(c+)_Pw(c_) = Mw(c+)_Mm(c—)‘
Also we have
Fm(c+) =.Pw(6‘+)—.P(0) = Pw(c+)_%[Pw(0+)+Pm(c_)]7
Fo(e—) = M,(c—)—M(c) = My(c—)—$[M,(c+)+M,(c—)].
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From (8) and (9) we easily deduce
(10) 107’(0) = F(¢) and apF,(c) = f(c).

With relations (10) at hand it can be easily checked that F is an
indefinte ADS-integral (w) of f on [a, b]. Hence the proof of the theorem
is completed.

Note. By Theorem 2.2, an indefinite ADS-integral (w) of f on [a, b]
is nccessarily measurable (w*) on [a, b], but it can be shown, as in the
Lebesgue case, that the approximate w-derivatives of a function F, which
is measurable (0*) on [a, b], are also measurable (»*) on [a, b]. Thus

an ADS-integrable () function is necessarily measurable (o*).
THEOREM 3.4. If f is Lebesgue-Stielljes integrable (w) on [a, b], then
f is ADS-integrable (o) on [a, b], and

b b .
(LS)ffdw = A—ﬁéffdmr%w,(aw%w,(b).

Proof. Let the function F be defined on X by

((LS)ffdw if a<w<b,
a
F(@) =\ o if z<a,
F(b) if @>b.

Then ¥ is an indefinite ADS-integral (@) of f on [a, b] and

b
ADS [ faw = B ()~ F(a) = 3 [Fb+)+ F(b—)— Fla+)—F(a-)]

1 1
= F(b)— 2 ws(a)— £ wy(b).

COROLLARY 3.4.1. If F' is an indefinite ADS-integral (w) of f on [a, b],
then F is constant on each interval of SyN[a, b].

Theorem 3.4 shows that the definite ADS and LS-integrals (w) on
[a, b] of a function f integrable (w) in both senses are not always equal.
This is due to the fact that LS-integral is not necessarily an additive
function of closed intervals. However, the definition of LS-integral (w)
can be modified so as to be an additive function of closed intervals as
follows:
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Definition 3.3. A function f defined on [a, b] is L,-integrable on
[a, b] if it is LS-integrable (w) on [a, b], and

b b
1 1
L,,,ffdw _ (LS)ffdw-_—Ew,(a)——iwf(b).

THEOREM 3.5. If f is ADS-integrable (w) on [a, b] and f(x) = 0 a.e. (o)
on [a, b], then f is LS-integrable (w) on [a, b].
Proof. Let F be an indefinite ADS-integral (w) of f on [a, b]. Then
we have
apF.,(x) =f(x)>0 a.e. (0*) on [a,bd].

Now, for arbitrary . > 0, by considering the function F(x)- eo(x),
it can be shown, by using Theorem 2.4 as in Theorem 3.1, that F is non-
decreasing on [a, b]. Therefore, F', is LS-integrable (») on [a, b] (cf. [3],
Theorem 6.3, p. 358). But

F.,(x) =apF,(x) =f(z) a.e. (0*) on [a,b].

Therefore, f is LiS-integrable () on [a, b], which completes the proof
of the theorem.

THEOREM 3.6. Suppose that {f,} is a non-decreasing sequence of ADS-
integrable (w) functions on [a, b], and that the sequence

b
{Eaffnd(o + %w}n(a) + —;-wfn(b)}

18 bounded from above. Then the function

f(@) = limf, (x)

n—-o0

18 ADS-integrable (w) on [a, b], and
b __ b
ADS [ fdo = lim ADS [ f,do.
a n—>0 a

Proof. Since f,(x)—f,(x) = 0 and, by Theorem 3.2 (ii),
b

ADS [ (f,—f)do

a

exists, so, by Theorem 3.5,

b
(LS) [ (fa—fr)do



120 D. N. SARKHEL

exists for every n. Now, using Theorem 3.4, it follows that the integrals

b
(LS) [ (fa—f)do, n=1,2,...,

constitute a sequence bounded from above. Hence, by Lebesgue’s monot-
one convergence theorem,

b
(L8S) [ (f—fi)dw
a
exists, and
b ' b
(LS) [ (f—f)do = lim (L8) [ (f,—f1)do.
This implies, by virtue of Theorem 3.4, that
b
ADS [ fdw

exigts, and

b
S 1 1
ADS f fio + 5 o,(a) + 5 wy(b)

n—oo

b
— 1 1
= lim {ADSff,,dw—l—Ew,n(a) + —2—wfn(b)},

whence the theorem follows by noting that
wy (a)>wg(a) and g (b)—>wH(d).

THEOREM 3.7. Let f be ADS-integrable (w) on [a, b]. If

P(z) = A_DEffdw and M(x) = Esfbfdw,
then we have ) ’
P (a+) = o a) and M, (b—) = Jo(d).
Proof. If F is an indefinite ATS-integra,l (w) of f on [a, b], then
P(x) = F(z)—F(a) and M(x) = F(b)—F(x).
If a8, we have, as F is w-approximately continuous at a,

P,(a+) = Fo(a+)—F(a) =0 = }wya).
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If aeD, note that ap F,(a) = f(a), whence
Py(a+) = Fo(a+)—F(a) = Fo(a+)—3[F,(a+)+F,(a—)] = }oa)

This completes the proof of the first part. The proof of the second.
part of this theorem is analogous.

THEOREM 3.8 (cf. [9], Theorem 3). Let f be ADS-integrable (w) on
[a, b]. Then, for every non-empty closed set E < [a, b], there exists an inter-
val (a, B) with EN(a, ) #* O such that

(i) f ¢s LS-integrable (v) on EN[a, f];

(ii) of I = [ay, bi] denotes the closed interval contiguous to EN[a, B}
relative to [a, B, then

D'|ADS [fda| < +oo;
k I

(iii) ¢f = 18 @ limit point of end poinits of {I,}, then there exists a set
A, > En[a, B] such that A, has w*-density 0 at x and

lim O(w-ADS, f, A,nI;) =0,

k—o0

where O(w-m, fy4.N1I,) denotes the oscillation on A, NI, of the indef-
inite ADS-integral (w) of f on I,.

Proof. Let F be an indefinite m-integral (w) of f on [a, b]. Then
we can write

[a, ] = U E,,

k=1

where each E, is closed and F is AC-w on each FE,. Since

E = ,E)l (ENEy),
there exist, by Baire’s category theorem, an interval (a, 8) with En(a, g}
# 0 and a positive integer n such that En[a, 8] « ENE,. Therefore, F
is AC-w on En[a, B].
Neglecting the trivial case where En[a, 8] is a singleton, we can
assume that a, e E. We now write

Fu(t) +~ 2t =) o)~ o (a1,
T e(ay br) & So;
H(z) = | Fola,+), we(ayy by) = So;
¥ (x), rzelBN[a, f];
F.(8+), x> f;
F,(a—), rz<a.
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Observe that F is w-approximately continuous on [a, b] and by Co-
rollary 3.4.1, F is constant on the intervals of Syn[a, b]. Now, let ¢ > 0

be given. Then, as F is AC-w on EN{a, f], there is a 6 > 0 as required
by Definition 2.4. Given ce EN[a, ], we can find & < ¢ and n > ¢ such
that

w(c—)—w(é—-)<d and o(p+)—w(c+)<9.

Then, if xe(ay, b,) = (&, ¢c), we have
H (@) — F (¢ —)| < |Fy(a+) = Fo(c—)|+ 1Fo (b —) — Fy(a,+)] < 2¢,
and if xe(a,, b,) = (¢, ), we have
|H(2) = F,(¢+)| < [Fy(pn+) —Fo(c )|+ 1Fy(by—) — Fo(a,+)| < 26.

Hence H is w-approximately continuous on X. Clearly, H is AC-w
on each (ay, b,), and hence, corresponding to each &/2*+), there is a 6, > 0
as required in Definition 2.4. We can find a positive integer N such that

D {o(bt)—o(g—)} < 8.
k=N+1
Then, putting 6, = min{é, é,, d,, ..., Oy}, We see that, for every
set of pairwise disjoint intervals {J,} with D w(J}) < &,, we have > [H (J})|
< 2¢. This implies that H is AC-won X , and hence H,, is LS-integrable (o)
on X. But

H,(z) =apF,(x) = f(xr) a.e. (0*) on En[a, f].

Therefore, f is LS-integrable (w) on EN[a, f], which proves (i).

Again, H being AC-0 on X, it can be shown in a way analogous to
the proof of Theorem 5 in [1], p. 62, that it is of bounded variation on X.
Therefore, F' is BV on En[a, ], and thus we get condition (ii),

- b
Z[ADS fkfdw] = Y IF(b) — F(a)| < + 0.
ag

Finally, assume ¢ is a limit point of end points of {I,}. By Theorem 2.2,
there exists a closed set A such that A has o*-density 0 at ¢ and,
for every xe¢A, F,(x—) and F,(x+) are, respectively, the ordinary uni-
lateral limits of F at x relative to A. Since F is AC-w on En[a, B8], we
can assume further that 4 o En[a, 8]. Now, given ¢ > 0, corresponding
to every xeA, we can find 6, > 0 such that

1) |F (@) — F(2;)] < g
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for all z,, x,e A with [x,, ,] = (x— dx, )V (2, 2+ dz). By the Heine-Borel
theorem, there is a finite collection of the intervals (x — dz, z + dx), say
{(#; — Ox;, x;+ 0x;)}i-,, covering AN[a, 1. Thus we can find a positive
integer N such that, for every k > N for which AN1I, # @, there cxists
an ¢ with

c (#; — ox;y x;+ 0x;).

It follows, by using (11), that, for all k > N,
0(w-ADS, f, AnI,) < % <e.

This completes the proof of the theorem.

THEOREM 3.9 (cf. [9], Theorem 1). Let f be ADS- -integrable (») on
{a, x] for every xe(a, b), and let F(x) denote the definite ADS-integral (v)
of f on [a, z]. If F,(b—) exists finitely and if w;(b) is finite, then f is ADS-
ntegrable (w) on [a, b] and we have

Esffdw _ Fw(b—)—i—%w,(b).

Proof. Let a = 8, < 8, < B, < ... be a sequence converging to b.
Then f is ADS-integrable (w) on each of the intervals I, = [By, Bi.1]-
Let F), denote the indefinite ADS-integral (o) of f on I, satisfying F.(B,)
= 0. Write

[Fo(x) if #<p,

i) — ; eBrry) i el m>1,
F,(b—)+ }o,(b) if # =b,
Fo(b—)+ (b) it #>b.

Then it is easily seen that, for a < # < b,
o x
H(w) = ADS [ fdo = F (),

and H is an indefinite ADS-integral (») of f on [a, b]. Thus f is ADS-
integrable (w) on [a, b], and we have

'ATsffdw — H(b)— H(a) =Fm(b—)+%w,(b).



124 D. N. SARKHEL

THEOREM 3.10. Let f be A_])S-integmble (w) on [z, b] for every xe(a, b),
and let F(x) be the definite Es-integml (w) of f on [z, b]. Suppose that
F,(a+) exists finitely and wy(a) is also finite. Then f 18 E@-integmble
(w) on [a, b], and we have

Es‘ffdw - F,,,(a+)+%w,(a).

THEOREM 3.11 (cf. [9], Theorem 2, and [12], Theorem 5.1, p. 257).
Let f be LS-integrable (w) on a closed set Q < I = [a, b] and ATS-integmble
(w) on each of the closed intervals contiguous to Q relative to I. Let a < a
and 8 > b, and let f be extended over [a, f] by defining f(x) = 0 for xe[a, BIN1I.
Let J, = [ay, Bx] denote the interval comtiguous to Q relative to [a, B,
A = {a;} and B = {B;}. Suppose further that the following conditions are
satisfied :

i > |ADsffdw|< + oo.

(i1) If T 18 a limit point of AU B, then there exists a set E, contammg
all points of AU B in some neighbourhood of x such that E, has »*-density 0
at x and

(*) lim O(w-ADS, f, E,nJ;) = 0.

k—oc0

Then f 18 ADS-integrable (w) on I and we have

ADS ffdw

— (©8) [fao+ > A0S [ faw— %Z arla) —5 > @B
Q % TenI

apel Prel
Proof. Since f is LS-integrable (w) on @ and ADS-integrable (w)
on each J,, we assert that f is finite a.e. (0*) on [a, 8] and we must have

Z lowg(ag )| < +o0  and Z lws(Br)] < + o0.
% %

Put I, = [a, x] for a <2 < and define H on X by

ZADS ffdw—l— waak)—i- Zw,bk

Jpnly aj.€(a,z) by e(a,z)
H(z) = for a < # < B,
0 for < a
H(B) for z > 8,
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where {a;} and {b,} are enumerations of A\ B and B\ A4, respectively,
and ADS [ fdw = 0 if E is either the empty set or a singleton.
E -
We shall show in the following steps that H is an indefinite ADS-
integral (w) of some function on [a, ].

Step I. To show that H is w-approximately continuous on [a, 8],
we take an arbitrary but fixed point ce[a, 8].

I (a). Let a, < ¢ < B, for some n. Then, for all z¢(c, 8,),
H(z) = H(o)+ADS | fdo.

This implies, by Theorem 3.7, that
H,(¢c+) = H(c)+ 2 wy(c).

I (b). Let ce B\ A and suppose that ¢ is a limit point of AU B. Then,
given ¢ > 0, we can find, by hypotheses, a positive integer ¥ and a 6 > 0
such that (¢, ¢+6) does not contain any end points of J, for ¥ < N and

Z‘ES— ffdw|<e, 2 log(a)| < e,
'(12) k>N Ik age(c,c+9)

|wy(bp)l <e, and O(w-ADS,f,E.nd;)<ce
by€(c,c+9)

for k> N,

where E, has o*-density 0 at ¢ and E, contains all end points of
Jc (¢, e+ 8). If ze{E,N (e, c+ 6)}\ U J,, we have
k

H (x)— H(c)
—_—_ 1 1 1
— ZADS f faw+ Z wflay) +5 Z og(bi) + 5 wy(0),
k>N JEN(e,x) ape(c,z) by e(c,z)

while, if xe E,nJ,N(c, c+ 8) for some n, then » > N and

H@)-H()= ' ADS J{fdw+ADSa{fdw+

Jrc(ca,]

1 1 1
+§ Z wf(ak)""é' Z wf(bk)+'2‘wf(0)-

aye(c,) by e(c,7)

These relations together with (12) imply that
|H () — H(c) — }wy(c)| < 3¢ for all xeE,N(c, ¢+ d).
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Thus

H,(o+) = H(e)+ jay(o),

which is also trivially true if ¢ is an isolated point of A U B.
I (¢). Let ce@Q\ (AU B). Then, proceeding as in I(b), it can be seen
that

H,(c+) = H(c).
It can be shown analogously that in cases I(a) and I(b) we have

H,(¢c—) = H(c)—3}w(c), while in case I(c) we have H,(c—) = H(c).
Thus we have

H(@)tholo) if oe UJy,
H(x) if 7e Q\ (AUB).

(13) H,(z+) =

Relations (13) imply that H is w-approximately continuous at each
point of [a, #]. This completes the step I.

Step II. To show that H is ACG-w on [a, 8], we note that
. T
(14) H(z) = H(a))+ADS [fdo for zedy, k =1,2,...
a
So H is ACG-w on|J J;. We now define the function g on [a, 8] by
2

[0(B—) — (2 +)1T"ADS [fdo  if @e(ay, fi) & So,
i

0 elsewhere.

g(z) =

Then g vanishes on @ and is constant on each (a, 8;). So, by (i), ¢
is LS-integrable (w) on [a, 8], whence, by Theorem 3.4, g is ADS-inte-
grable (w) on [a, 8]. We define the function G on X by

ADngdw if <<y,

Gl@) =\ ap) it 2> p,
0 if r<a.
Then, for xe @\ (AU B), we have, by Theorem 3.4,

F A .

G(@) = (L8S) [ gdo = Y ADS [ faw.
k

a JpnI,
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Again, let us define the function % on [a, §] by
if(x) if ze(ANB)U(B\ 4),
B elscwhere.

Then, for xe@Q\ (Av B), we have

x

= Z wf(a,c)+% Z o (by) = (LS) f udo.

aks(a,a:) bkc(a,:z:) a

It follows now that, for all z¢Q\ (4uU B),
(15) H(w) = (L8) [ gdo +(LS) [udo.

Therefore, H is AC-0 on @\ (A vV B). This complétes the step II.
Step III. From (13) it follows thext
f(x) if zeDN UJk)7
(16) apH,(2) =
0 if me(DnQ)\(AuB).

Again, the set @, = @\ (AUBUD), being measurable (»*), has
o*-density one a.e. (0*) on itself. So it follows from (15) that

(17) apH,(x) = g(z)+u(®x) =0 a.e. (0*) on Q,.
Also, it follows from (14) that
(18) apH,(z) = f(x) a.e. (0*) on UJk (AUB).
Thus we have proved the desired properties of H.
Next, we define the function % on [a, 8] by
fl@) if ze®\(AUB),
h(z) =
0 if X e UJ’C'

Then A is, clearly, LS-integrable (v) on [a, ,B] and, hence, ADS-inte-

grable (w) on [a,p]. Let M be the indefinite ADS- -integral (w) of 2 on
[a, B] satisfying M (a) = 0. Finally, let F be defined on X by

F(z) = H(x)+M(x).

Then we see that F is w-approximately continuous and ACG-o
on [a, B]. Also, as apM,(z) = h(x) a.e. (»*) on [a, ], we have, by (16),
(17) and (18),

spF.(x) = f(x) a.e. (0*) on [a, B].















