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OPERATORS WHICH COMMUTE WITH CONVOLUTIONS
ON SUBSPACES OF L_(&)

BY

ANTHONY TO-MING LAU (EDMONTON, ALBERTA)

1. Introduction. Let @ be a locally compact group. Let T be a bounded
linear operator from L (@) into L. (G) which commutes with left
(respectively, right) translations. Then, as known (see [2], p. 300), there
exists a regular Borel measure s on G such that

T(f) =f+«p (vespectively, T(f) = uxf)

for each continuous complex-valued function f on @ vanishing at infin-
ity. Furthermore, if T is in addition weak*-weak* continuous, then the
equation holds for all f in L_(G).

A linear operator T': L, (G)— L. (@) is said to oommute with con-
volution from the left (respectively, right) if

T(p*f) =@*T(f) (respectively, T(f*¢) = T(f)»¢)

for each ¢ € L,(@) and each fe L (G). It is not hard to see (Lemma 2)
that any bounded linear operator T': L. (@) — L, (@) which commutes
with convolution from the left (respectively, right) also commutes with
the left (respectively, right) translations on L.(@). However, the con-
verse is false unless @ is discrete or T is weak*-weak® continuous even
when the group G is assumed to be compact and Abelian (see [6], Theorem 2,
and [10], Theorem 4.1).

Let UBC,(G) (respectively, UBC,(@)) denote the complex-valued
right (respectively, left) uniformly continuous bounded functions on @
a8 defined in [7], p. 276. Curtis and Figa-Talamanca have proved in [3],
P. 169-185, Theorem 3.3, that the dual Banach space UBC,(Q)* is isometric
and isomorphic to the space of bounded linear operators from L. (@)
into L, (@) commuting with convolution' from the left.

One of the purposes of this paper* is to extend Curtis and Figi-Tala-
manca’s result to certain subspaces of L(G). More precisely, let X be

* This research is supported by NRC Grant A-7679.
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a topologically left (respectively, right) invariant and topologically left
(respectively, right) introverted closed subspace of L., (@) as defined in [12],
p. 366. In this paper we show that there exists a closed subspace Y of
UBC, (@) (respectively, UBC,(@)) which is also topologically left (respec-
tively, right) introverted, and the Banach algebra Y* with the Arens
product is isometric and algebra isomorphic to the algebra of bounded
linear operators from X into X commuting with convolution from the
left (respectively, right).

We also show that the space of bounded linear operators from UBC,(G)
into UBC,(G) commuting with convolution from the left coincides with
the space of bounded linear operators from UBC, (@) into UBC,(G) commut-
ing with left translations. Furthermore, it is also isometric and isomorphic
to UBC,(@)*. A similar assertion is true also for UBC,(G) for operators
commuting with convolution from the right.

Hively [9], Theorem 5.4, has proved, using the existence of lifting
commuting with translations on a locally compact group, that if G is
a locally compact non-compact Abelian group, then there exists a bounded
linear operator 7' from L (@) into L, (@) which commutes with left trans-
lations, and 7T is not weak®-weak® continuous. Actually, Hively’s results
remain true even for a compact Abelian group G (or, more generally, ame-
nable as discrete) which is non-discrete. Indeed, for any such group @
there exists a left invariant mean m on L, (@) which is not a topological
left invariant mean (see [6], Theorem 2, or [10], Theorem 4.1) and the
operator T(f) = m(f)-1 commutes with left translations but 7 is not
weak”-weak” continuous.

We prove in this paper that if G is any locally compact non-compact
group, then there exists a bounded linear operator T from L (@) into
L, (@) which commutes with convolutions from the left (hence with left
translations) and 7 is not weak®-weak® continuous. Conversely, if @ is
compact, then any bounded linear operator T from L,(@) into L. (G)
commuting with convolution from the left is weak®-weak® continuous.
Our proof is elementary, and does not depend on the lifting theorem.

It is our pleasure to thank Professor M. Rieffel for bringing our
attention to the work of Hively [9]. It is from this source that we learn
of the result of Curtis and Figa-Talamanca [3], p. 169-185, which we were
unaware of when preparing the first version of this paper.

2. Some notation. Let G be a locally compact group with a fixed
left Haar measure dv. The modular function 4 on @G and spaces L,(G)
and L (@) are defined exactly as in [7].
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Given ¢ € L,(G) and f € L, (Q), the functions ¢+f and f*¢ on G de-
fined by

(@) (@) = [eW)f(y~ a)dy and  (fef)(2) = [ f(v)F(y~ 2)dy

(where ¢(z) = ¢(2~')) are in C(G), the space of bounded continuous
complex-valued functions on @. Also, ¢*f e UBC,(@) and f*$ € UBC,(@)
(see [7], p. 295).

Finally, if # € G, we define the left and right translation operators
on L, (@) at z by (L.f)(y) = f(ey) and (r,f)(y) = f(y) for each y e @ and
each fe L,(G).

3. Technical lemmas. Let X be a closed topologically left (respectively,
right) invariant subspace of L (@), i.e. p»X = X (respectively, X» ¢ = X)
for each ¢ € L,(G). Following Wong [12], p. 356, we say that X is topolo-

gically left (vespectively, right) introverted if, for each m e L, (G)* and
f € X, the functional on L,(@) defined by

1, . -
o> (— ¥+, m> (respectively, ¢ > (fs, m))

is also an element in X.

LevMMmA 1. Let X be a topologically left invariant and left iniroverted
subspace of L, (G). Let Y = L,(F)*X. Then

(a) Y 18 a closed subspace of UBC,(G) which is also topologically left
invariant and tniroverted.

(b) For each m e Y*, |my|l = |m|, where my: X - X s defined by

/1
(), 0> =(5 31, m).

(c) (mOn), = myony,, whers (mOn)(h) = m(ng(h)) for each he Y.
Proof. (a) It follows from [7], p. 295, and the Cohen Factorization
Theorem (see [8], p. 268) that Y is a closed subspace of UBC,(@). Clearly, ¥

is topologically left invariant. To see that Y is introverted, let m € L* (@),
ye L,(G), and feX. Then

1 .
<Z‘ p*(y=xf), m> = {yxh, ),
where b is the functional on L, (@) defined by the map

¢ —> <-—Z—tf)#f, m>.
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Since X is introverted, » € X. It follows that Y is also introverted.

(b) Clearly, |my|l < |lm|. To see the reverse inequality, let {p,} be an
approximate identity of L, (@) and |/l < 1. Then (1/4)¢, is also an ap-
proximate identity of L,(@) (see [12], Lemma 3.3 (a)). Let f € Y; then

-0

o]

|5t 1

(see [8], p. 286). Hence

for cach a.

I, (Flleo > i, () (@) = Im(%wf)

Consequently, |my(f)llo = Im(f)|. Since f is arbitrary, we have
llmy]l = [m]l.
(c) Let fe X and ¢ € L,(G); then

1.
(mom (1), 9> = (gt mon) = (o) m)

o= <—j-¢*nL(f), m> = {my, (ny,(f)), @

using [12], Lemma 4.3 (b).
Remark 1. It is easy to see that an analogous statement also holds

for a topologically right invariant and right introverted subspace X of
L, (G) with Y = XxL,(G)", and mg: X - X defined by

<mg(f), 9> = {f*p, m).
I X = L,(G), then
L,(@*X =UBC,(Q@) and Xx+IL,(@)" = UBG(G)

a8 known from [8], p. 283.

LEMMA 2. Let T be a bounded linear operator from L. (G) into L. (G).
Let f € L,(@).

(8) If T(pxf) =o*T(f) for each ¢ e L,\(@), then T(l.f) =1,T(f)
for each » € @.

(b) If T(fsp) = T(f)xp for each ¢ e Ly\(G), then T(r.f) =r,T(f)
for each xe@.

Proof. (a) Let {p,} be an approximate identity of L,(G@). Then, for
each k in L (@), the net {(1/4)§,+h} converges to k in the weak® topology
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of L, (@) (see [12], Lemma 3.3 (b)). Hence, for each » € G,
o 1.
T(l.f) =w*- llmT(j npa*l,f)
.1 ~ .1,
= we-lim— (@) "¢ I(f) = w*- Im— G, 7(f) = LI().
Part (b) can be proved similarly.
Let f € UBC,(@), and m € UBO,(@)*. Define a function m,(f) on G by

my(f)(@) = m(l,f) for each z e@.

Then, as known (see [7], p. 2756), m;(f) is also a function in UBC,(G).
Similarly, we define for each f € UBC, (@) and each m € UBC,(@)* a func-
tion m.(f) in UBC,(G)* by

m.(f)(®) = m(r.f) for each xeQ@.

The following lemma relates my, with m;, and mg with m,, where my,
and mpy are defined as in Lemma 1 and Remark 1 with X = L (@).

LemmA 3. If f €e UBC,.(Q), then my(f) = my(f). Also, if f e UBC,(G),
then mg(f) = m.(f).

Proof. It suffices to show that {(my(f), 9> = {(m(f), > for each
@ € L, (@) with compact support. Let ¢ be such a fixed element in L,(@).
If m is the point evaluation at some point a € G, then

1 1
na1)y9 = (5 1)@ = [ @t~ a)as

- f p@)m(Lf)do = (my(f), ¢)-

IIm e UBC,(@)*, m > 0, and ||m| = 1, then there exists a net m, of
convex combinations of point evaluations such that m,(k) converges
to m(h) for each h € UBC,(G@). Then

1
<maL (f)’ (P> = <—A_ &*f’ ma>

converges to

1
<Z g+, m> = {my(f), ).
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On the other hand, if ¥V is the support of ¢, then the set {I.f; » € N}
is @ norm compact subset of UBC,(G). It follows from the Mackey-Arens
theorem that the net m,(l.f) converges to m(l.f) uniformly on N. Hence

mo(f), 9> = [ (@) m,(I.f)do
N

converges to

[ @) m(lf)de = <m(f), 9.
N

Since every linear functional in UBC,(@)* is the linear combination
of positive ones with norm one, our assertion is proved.
The proof for functions in UBC,(@) is mmﬂa,r

Remark 2. Lemma 3 implies immediately the followmg well-known
result (see [4], Theorem 4, and [6], Lemma 2.2.2): If fe UBC,(G) and
m € UBC,(@)* are such that m(l,f) = m(f) for each x € G, then m(pxf)
= m(f) for each positive ¢ in L,(@) with norm one.

4. The main theorems. If Y is a topologically left (respectively,
right) introverted closed subspace of L. (@), then Y* becomes a Banach
algebra with the Arens product © as defined in Lemma 1 and Remark 1
(see [12], p. 354).

THEOREM 1. Let X be a topologically left (respectively, right) invariant
and topologically left (respectively, right) imtroverted closed subspace of L (@).
Let T be a bounded linear operator from X into X. Then the following state-
menits are equivalent:

(a) T' commutes with convolution from the left (respectively, right).

(b) There exists a bounded linear functional m on L,(G)*X (respec-
tively, X+L,(G)") such that T = m;, (respectively, T = mp).

Consequenily, the algebra of bounded linear operators from X into X
commuting with convolution from the left (respectively, right) is isomeiric
and algebra isomorphic to the Banach algebra (L,(G)+X)* (respectively,
(X+L, (@))%) with the Arens product.

Proof. We prove the theorem for operators commuting with convo-
lution from the left. The proof for operators commuting with convolution
from the right is similar.

That (b) implies (a) follows from [12], Lemma 4.3 (B).

To prove that (a) implies (b), let {p,} be a bounded net of approxi-
mate identity in L, (G). Then the net {T™(g,)}, restricted to ¥ = L,(G)*X,
is bounded in Y*. Let m be a weak*-cluster point of {T*(¢,)}. By passing
to a subnet, if necessary, we may even assume that T*(@,) converges
to m in the weak® topology of Y*. Let f € L (@). Then for each ¢ € L,(G)
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we have

m(Ne) = lin( T pef, T (0)) = 1ma(2(Z o), 2.)

— lim <—_f_,— PT(f), 9.) =W (T (F)aga, 03 = <T(1), 95,

Hence my,(f) = T'(f).

The final assertion follows immediately from Lemma 1.

Remark 3. The linear isometry between (L,(@)* X)* when X = L (G)
and the space of all bounded linear operators from X into X commuting
with convolution from the left is due to Curtis and Figa-Talamanca [3],
p. 169-185, Theorem 3.3.

THEOREM 2. Let G be any locally compact group. If G is non-compad,
then there exists a bounded linear operator from L (@) into L. (@) commuting
with convolution from the left which is not weak®-weak® continuous.

Proof. Assume that G is non-compact and o is a compact subset
of @, and let a, be an element in G but not in o. Let m be a weak*-cluster
point UBC,(G)* of the net {8;,} of point evaluation functionals at a,.
Let T = my. Then T commutes with convolution from the left by The-
orem 1. But 7T is not weak*-weak® continuous. For otherwise, if ¢ € 0,(G),
where C,(@) denotes all complex continuous functions on @ with compact
support, then T*(p) € L,(G). Hence, if g € C,(G), then (by [7], Theo-
rem 20.16) ‘

1
<F(¢)1g> = {p, my(9)) = <—A_ P*g, 'm'> = 0.

Consequently, T*(p) = 0 for each ¢ € O, (@). It follows that 7% = 0
by density of O (@) in L,(G). This is impossible, since |m| = ||T| =1
by Theorem 1.

The converse follows from Theorem 1 with the observation that if ¢
is compact, then, for each m in UBC,(Q)* = C(G)* = M(G), and f € L (@),

1
(), 7> = (G Bf, m) = <y pemy  tor each p e Ly (@)

Remark 4. Theorem 2 and Lemma 2 together imply Hively’s
result (see [9], Theorem 5.4).

THEOREM 3. Let G be any lacally compact group and let T be any bound-
ed linear operator from UBC,(G) into UBC,(Q) (respedtively, from UBC,(G)
intio UBC,(G)). Then the following statements are equivalent:

(a) T' commutes with convolution from the left (respectively, right).

(b) T commutes with left (respectively, right) tramslattons.
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(e) There exists a bounded linear functional m on UBC, (@) (respectively,
UBC,(@)) such that T = m;, = m, (respectively, T = mg = m,).

Consequently, the space of bounded linear operators on UBC,(G) (respec-
tively, UBC,(@)) commuting with left (respectively, right) tramslations 18
isometric and isomorphic to UBC,(Q)* (respectively, UBC,(G)*).

Proof. That (a) implies (b) follows from Lemma 2.

If (b) holds, let J, denote the functional on UBC,(G) defined by
8.(f) = f(e) for each feUBC,(G@), where ¢ is the identity of @. Let
m = T*(4,). Then for each fe UBO,(Q) we have

(mf) (@) = <efy T*(8)) = (T(Lf), 8> = LT(f), 8> = T(f)(#).

Hence m, = T. By Lemma 3, T = m;,. Then (c) implies (a), and the
lest of the assertion follows from Theorem 2, since UBC, (@) is topologically
reft introverted (see [12], Lemma 6.2).

Let X be a topologically left invariant closed subspace of L (&)
containing the constant functions. A linear functional m on X is called
a topological left invariant mean if m(pxf) = m(f) for each positive element ¢
on L,(G@) of norm one (see [6], p. 24).

THEOREM 4. Let X be a topological left invariant closed subspace of L, (&)
containing constants. Then the following statements are equivalent:

(a) X has a topological left invariant mean.

(b) There exists a weakly compact positive operator T from X into X
of norm one commuting with convolution from the left.

Proof. If (a) holds, and m is a topological left invariant mean on X,
write (If) () = m(f). Then T satisties (b).

Conversely, if (b) holds, and fe X, then I.T(f) = T(l.f) for each
# € G by Lemma 2. Hence {I,T(f) = T(l,f); x € G} is relatively compact
in the weak topology of X. It follows that T'(f) is a weakly almost periodic
function on @. Let WAP(G) denote the space of weakly almost periodic
functions on @, and let y be the unique left invariant mean on WAP(Q)
(see [6], p. 38). The space WAP (@) is topologically left invariant. By [6],
the proof of Lemma 2.2.2, y is also a topological left invariant mean on
WAP(G). Write m(f) = y(Tf). Then m is a topologlcal left invariant
mean on X.

Remark 5. It is well known that a locally compa.ct group @ is compact
if and only if there exists a non-zero weakly compact operator from L, (&)
into L,(@) commuting with right (or left)’ translations (see the proof of
Theorem 1 in [11], and [1], Theorem 5). Theorem 4 implies that a locally
compact group @ is amenable (i.e. L, (@) has a topological left invariant
mean) if and only if there exists a non-zero positive weakly compact
linear operator from L (@) into L,(@) commuting with convolution from
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the left. In fact, using [6], Theorem 2.2.1, and a proof similar to that
of Theorem 4, we can show that in order for G to be amenable it is suffi-
cient that there exist a non-zero positive weakly compact linear operator T
from UBC,(G) into UBC,(G) commuting with left translation. However,
we do not know whether the condition that T be positive can be dropped.
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