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1. Introduction. A continuum is a compact connected metric space.
A continuum X is called semi-aposyndetic provided for each two points
of X there exists a subcontinuum of X which contains one of them in its
interior and which does not contain the other one. A continuum X is locally
connected provided every point of X has a neighbourhood base consisting
of connected subsets of X. Clearly, each locally connected continuum is
semi-aposyndetic.

A topological space X is said to be og-connected (weakly o-conmnected)
provided it is connected and cannot be decomposed into countably infinite-
ly many mutually separated (mutually separated, connected) non-empty
subsets. A topological space X is said to be a semi-continuum provided
each two points of X can be joined by means of a continuum contained
in X. By Sierpinski’s theorem, each continuum is a o-connected space.
It can easily be proved that each semi-continuum is a o-connected space
(see [1], p. 216).

The purpose of this note* is to answer in the affirmative the following
two questions the first of which is due to Grispolakis et al. ([1], P 976)
and the second one to Mycielski [4], Problem 3.

QUESTION 1. Suppose that X is a continuum such that each o-connected
subset of X is a semi-continuum. Is every connected subset of X arcwise
connected ?

QUESTION 2. Does every infinite o-connected set contain an infinite
proper o¢-connected subset?

2. o-conmectedness. The following theorems concerning o¢-connect-
edness are analogous to some theorems on connectedness in [2] (The-
orem 4, p. 133, Theorem 5, p. 140, Theorem 7, p. 141, and Theorem 7,
P. 249).

* This work is a part of the author’s doctoral dissertation and was done under
the direction of Professor E. D. Tymchatyn.
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THEOREM 1. If C i a o-connected subset of a a-connected space X and

xN\e = M,

fm=1

where the sets M, (i =1,2,3,...) are pairwise separated, then the set
Cu |J M; is o-connected.

=2

Proof. We can assume that O is non-empty. Just suppose that

GU U M‘ = AIUA3UA3U ey
i=2
where the sets 4, (¢ =1, 2, 3, ...) are pairwise separated. Since the set 0
is o-connected, we may assume that C = 4,. Thus

=2 =2
Now,

X == 'MIUAIUUAi = (MIUAI)U U (A‘ﬂMj).
f=2 f,§=2
Since the sets A; (¢ = 2,3, 4,...) are pairwise separated, and the
sets M; (j =2,3,4,...) are pairwise separated, the sets A;NM; are
pairwise separated. Also, the set M,uU A, is separated from each of the
sets A;NM,; (¢>2 and j> 2). Indeed,

(MU A)N (4N M) = (MU 4,)N(40M)
= (M4, M) U(4,n 4,0 M) = B,
(M,UA)N(4;n M) = (M,UA4,)N(4,nH,)
= (M, 4, M)U(4,n4;n 1)) = B.
Thus, the union
(M,UA,) u‘.Qz(A,nM,)

is a decomposition of X into a countable number of mutually separated
sets. Since X is o-connected and A, UM, # @, wehave A; = A; = A, =...
... = @. The connectedness of this set follows immediately from the above
argument if the sets 43, A,, ... are assumed to be empty. This completes

the proof that Cu | M, is o-connected.

i=2

COROLLARY 1. Every o-connected set X which contains more than two
points can be written as the union of two proper mon-degenerats o-connected
subsets. If X ts meirtc, then these sets may be taken to be F,.
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Proof. We have to consider two cases.
Oase 1. There exists an element » € X such that X\{»} is not o-
connected. Hence
X\{w} = 4,VA4,UAd,...,

where the sets A; are mutually separated for each ¢ =1,2,3, ..., and
at least two of the sets A, are non-empty. Suppose that A, and A, are non-
empty. Let

(-] 00

=2 i=1
i#2

By Theorem 1, B, and B, are o-connected and X = B,U B,.

Case 2. For each » € X, X\ {r} is o-connected. Let #, # #; be two
elements of X. Then

X = (X\{z,})U(X\{ay}).

The other assertions of the theorem are clear.

Mycielski has proved in [4] that there exists an infinite connected
set which does not contain an infinite o-connected subset.

COROLLARY 2. Every infinite o-connected set contains an infinite proper
o-conmected subset.

COROLLARY 3. Let A and B be two closed (or two open) sets. If AUB
and ANB are o-connected, then A and B are also o-connected.

Proof. In case where A and B are closed (or open), the sets A\B
and B\ A are mutually separated. By Theorem 1, the sets

A = (ANB)U(ANB) and B = (B\A)U(ANB)

are o-connected.

THEOREM 2. Let X be a o-connecied space. If A 48 & o-connected subset
of X and C t8 a o-component of X\ A, then X\C 8 g-connected.

Proof. Just suppose that
XN\C =N,

=1
where the sets M, are pairwise separated for each ¢ = 1,2, 3, ... Since
the set A is o-connected, and A = X\(, we may assume that 4 = M,.
Thus
An(CUU M) =0.
i=2
Hence
CcsO0uUM, c X\A.

1=2
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Since C is a o-component of X\A4, and Cu |J M, is o-connected
by Theorem 1, =2
o0
C=C0u UM,
=2

Hence M, = My =M, = ... =@. This completes the proof that
X\C is o-connected.

THEOREM 3. In a o-connected space X, let S8 be an infinite family of
disjoint o-connected subsets of X. If 8, and 8, are two arbitrary elements of S,
then in X\8, or in X \8, there exists a o-connected set which contains infi-
nitely many elements of S. Moreover, this set may be taken to be F, provided X
i8 metric and each of the seis 8, and 8, 48 & closed subset of X.

Proof. Let C; (j = 0, 1) be the s-component of X\§; which contains
8,_;. Thus, 8; € C,_; = X\8,_;. This implies that

By Theorem 2, X\C,_; is o-connected. Since C; is the o-component
of X\§; which contains 8,_;, we have X\0,_; = 0;. If C, contains only
a finite number of elements of S, then there exist infinitely many elements
of 8 contained in X\C, and, therefore, in ;. This completes the proof
that at least one of the sets C, and ¢, must contain infinitely many ele-
ments of the family S. If X is metric and each of the sets S, and §, is
closed in X, then, clearly, C; (j = 0,1) is an F,-set, since it is a closed
subset of an open set.

3. Continua.

Definition. A continuum is said to be finitely Suslinian provided,
for each number ¢ > 0, every collection of mutually disjoint subcontinua
of X with diameters greater than ¢ is finite.

We denote the boundary and the interior of a set ¥ by bd(Z) and
Int(E), respectively.

THEOREM 4. If the continuum X is nmot locally connected, it contains
a o-connected F ,-subset which ts not a semi-continuum.

Proof. Suppose that X is not locally connected at some point p € X.
Then there exists a closed neighbourhood ¥ of p such that p is not con-

tained in the interior of the component C of E containing p. Thus p € E\C.
Let {p,}3_, be a sequence of points in E\C converging to p. For each
n=1,2,3,...,let 0, be the component of E containing p,. It follows
that 0,NC =@, and C,Nbd (F) # @. Without loss of generality, we may
assume that the sequence {C,};_, consists of different components of E
and is convergent to a subcontinnum L contained in C. It follows that
Lnbd(E) # 9.
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Let F be a closed neighbourhood of p which is contained in the inte-
rior of F and let I be the component of F containing p. Since L is connected,
we have

L\[FUbd(E)] #0O.

Let g € (LNInt(E))\F. Let H be a closed neighbourhood of ¢ such
that H < E\F. Let D be the component of H containing ¢. It follows
that DuI = C and DnI =0O.

Therefore, the sets D, I, C,, C,, ... form a family of disjoint o-connect-
ed closed subsets of the g-connected space X. By Theorem 3, there exists
a o-connected F,-subset W which contains infinitely many of the members
of the family, and such that either W =< X\ D or W < X\I. By symmetry,
we may assume that W = X \I. Clearly, p is a limit point of W, and hence
the set P = Wu {p} is o-connected F,.

It remains to show that P is not a semi-continuum. Just suppose
that P is a semi-continuum. Let the point ¥ be an element of P\ F. Since P
is a semi-continuum, there exists a continuum R < P joining p and y.
Let T be the component of RNF which contains p. Since R is a continuum,
and F is a neighbourhood of p, we have TNnbd(F) # @. Hence T +* {p}.
But p e T < F implies T < I, and hence TaW = @. Thus T = {p}. This
contradiction completes the proof of the theorem.

COROLLARY 4. If X i3 a continuum such that each o-connected subset of X
i8 a semi-continuum, then the connected sets in X are arcwise connected.

Proof. As shown in [1], it suffices to prove that the continuum X
which fulfils the condition of Corollary 2 is semi-aposyndetic. But, by
Theorem 4, X is locally connected, and hence it is semi-aposyndetic.

The following theorem was proved in [1] (Theorem 3.2) with the
additional hypothesis that X is semi-aposyndetic.

THEOREM 5. A continuum X 18 finitely Suslinian if and only if X
satisfies (any) one of the following conditions:
(i) Every connected F -subset of X is arcwise connected.
(ii) Every comnected F,-subset of X 18 a semi-continuum.
(iii) Every o-connected F -subsel of X is arcwise connected.
(iv) Every o-connected F,-subset of X is a semi-continuum.
(v) Every weakly o-connected F,-subset of X is arcwise connected.
(vi) Every weakly o-connected I ,-subset of X is a semi-continuum.

Proof. The hypothesis that X is semi-aposyndetic is only used to
show that (iv) implies that X is finitely Suslinian. This follows directly
from Theorem 4 and from the fact that each locally connected continuum
is semi-aposyndetic.
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