COLLOQUIUM MATHEMATICUM

VOL. XXI 1971 FASC. 1

BOREL STRUCTURES FOR FUNCTION SPACES
BY

B. V. RAO (CALCUTTA)

1. Introduction. Let (X, B) and (Y, C) be two Borel spaces and F
a collection of measurable functions from X to Y. There is then a natural
map D: F X X — Y defined by &(f, ) = f(«). Let us say that F is admis-
sible if there is a Borel structure F on F such that the map @ from the
product space F X X into Y is measurable; where, of course, the product
space is equipped with the product o-algebra F x B. In that case we refer
to F as an admissible structure for ¥. The purpose of this paper is to
characterize admissible sets and to discuss as to how nice an admissible
structure be chosen. This problem, in case both the Borel spaces are
countably generated, was first considered by Aumann [1], p. 614. Theorem 1
of this paper is in essence proved by him — but by using complicated
arguments. Our arguments, we hape, are elegant. However we rely heavily
on the classical methods (see [2], [4], p. 207, and [5], p. 133). In Section 2
we give the notation and terminology. In Section 3 we consider the se-
parable case. Finally, in Section 4, we consider the general case.

2. Notation and preliminaries. Assume throughout this section that
(X, B) and (Y, C) are separable Borel spaces (i.e., countably generated
and containing singletons). Let G = [G,, n>1] be.a countable generator
for B. Define the Marczewski function [4] f on X by

2%6.
fo) = 3 2]

Then f is an isomorphism between X and the range of f, where the
latter is equipped with the relativized Borel algebra of I, the unit inter-
val (see also [5]). Consequently, we can and shall take X to be a subset
of 1 whenever necessary and B its relativized Borel algebra. Similar
considerations hold for (Y, C). Without explicit mention X, Y will be
given the relative topologies, so that they become separable metric spaces.
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Recall ([2], pp. 345, 373) that if X is a separable metric space, then
open (closed) subsets of X are said to be Borel sets of additive (multipli-
cative respectively) class 0. Having defined classes upto a; 0 < a < w,,
then define Borel sets of additive (multiplicative) class a to be countable
upions of sets of the previous multiplicative (additive. resp.) classes.
(Here w, denotes the first uncourtable ordinal). A function f from X to Y
is said to be of class o if inverse image of every open subset of Y is a set
of additive class a in X. We shall denote for 0 < a < w,, the set of Borel
functions of class < a by C,(X, Y). If no confusion can arise, we sometimes
write C, for C,(X, Y). Let us say that a collection F of functions from,
X to Y is of bounded Borel class if F < C, for some a < w,. One might
wonder that in identifying an arbitrary separable Borel space with a sub-
set of I, via the Marczewski function, we have fixed a generator and
that, consequently, the definition of bounded Borel class depends on
the generators. But actually it is not so. If under some identification
a collection F of maps from X to Y is of bounded Borel class, then it
remains so under any other identification. This is a direct consequence
of the composition laws for Borel classes (see [2], p. 376). It is however
true that C,(X, Y) does depend on the generator chosen.

IX=Y-=1, a< w,, then we can find a Borel function U,(z, y)
on Ix I such that,

Ou(I, I) c {U,(®, *); wel}.

This is a direct consequence of the corresponding fact for Baire
classification ([6], p. 137) and the connection between Borel and Baire
classifications ([2], p. 393).

Axiom of choice has been assumed throughout this paper.

3. Countably generated case. Till further notice we assume that
(X, B) and (Y, C) are separable and F, a collection of measurable maps
from X to Y.

THEOREM 1. The following are equivalent:

(i) F is of bounded Borel class.

(ii) F 48 admzissible.

(iii) There is a separable admissible structure for F.

(iv) The power set of F is an admissible structure for F.

Proof of (i) = (ii). Since obviously subsets of admissible sets are
adinissible, enough to show that C,(X, Y) is admissible for each a < w,.

In-case X = Y = I, let us choose a function U, on I X I as men-
tioned in Section 2. Choose a subset Z of I such that the map

T:z—> Uy(x, )

is one to one on Z o,ntoh C.(I, I). Having thus identified C,(I, I) with Z
via T, the relativized o¢-algebra on Z can be brought to C,(I, I) in an
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obvious way. The measurability of U, on I X I and hence on Z X I shows
that the structure given to C,(I, I) is admissible.

In case X <« I, Y = I, observe that any element of C,(X, I) can
be regarded as the restriction to X of an element of C, (I, I) (see [2],
p. 434 and 435). Thus C,(X, I) can be identified as a subset of C, (I, I).
Since this latter set is admissible by the above para, so is every subset
of it and hence (. (X, I) is admissible.

In case X =« I, Y < I, observe that C,(X, Y) is a subset of C, (X, I)
and since the latter set is admissible, so is the former.

In view of the remarks — via Marczewski function — made in
Section 2, the proof is complete.

Proof of (ii) = (i). First we show that if (£,, B,) is a separable
metric space with its Borel c-algebra and (£,, B,) is any measurable
space and h is a measurable map from £, X 2, to 2, — another separable
metric space, then there is an a < w, such that for each zeQ,, the map
h(z, -): 24, — £, is of class < a. Then our result follows by taking 2, = X,
Q, = F with any admissible structure, 2, = Y and h = ¢.

Since £, is separable, by standard arguments one can find a coun-
tably generated B, c B, such that h is measurable w.r.t. (2, x 2,, B, xB,)
and thus there is no loss to assume that B, is countably generated. Again
if 2, ' are in the same atom of B, the functions k(z, -) and h(2’, -) are
the same and, consequently, there is no loss to assume that B, is separable.
In this case, by using again the Marczewski function associated with
any countable generator for B,, one can think of (£2,, B,) as a separable
metric space with its Borel algebra. Thus, k being a Borel map, it should
be of some class, say a. Then, by [2], p. 377, every section of & is a function
of class < a, as desired.

Thus (i) and (ii) are equivalent. Observe that (iii) implies (ii) and
that from the arguments of (i) = (ii) it is clear that (i) =- (iii). Since any
structure larger than an admissible structure is admissible (iii) = (iv)
and (iv) implies (ii). This completely proves the theorem.

. Two con/lments are in order at this point. First, observe that the
above proof makes use of the axiom of choice. Aumann also makes use
of it, though he does not explicitly state it (see especially the discussion
following Lemma 4.1 of [1]). Secondly, the notion of bounded Borel
class is the same as that of bounded Banach classes as discussed by Aumann.

One can now ask whether consistent structures can be given to
C.(X, Y) for 0 < a< w,. That is, a structure C, to C, such that

(i) €, is separable,
(ii) 0 < B < a implies CzeC,,,
(iii) 0 < B < a implies C,|Cy; = C,.

The answer in the affirmative is given by Theorem 2. Let €, = (J C,.
a<w;
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THEOREM 2. There is a separable structure C, on C, satisfying the
following conditions:

(i) F < Cy 18 admissible iff C|F is an admissible structure for F.
(ii) The structures C, = C,|C, for 0 < a< w, are consistent in the
above sense.

Proof. Put C; = C,—J C;.
p<a
Since, by theorem 1, C; is admissible, fix separable structures C.

on C%. By any Marczewski function identify (C%, C%) with a subspace
of £(a) X I, where & is any one to one map on the ordinals < w, into I.
Thus O s being disjoint we have identified C_, as a subset of I xI. Now
the relativized Borel algebra on this subset serves the purpose ().

Aumann defines an admissible structure F on an admissible set
F to be natural if any other admissible structure on F contains F. He
also gives an example where such a natural structure need not exist.
Observe that if one takes Cy(I, I), the space of continuous functions
on I to I, then it has a natural structure. In fact, its topological field
(when C, is equipped with supremum metric) is the same as the field
induced by the evaluation maps. In passing we note that if F, = F, and F,
has a natural structure, say F,, then F, also has a natural structure,
namely F,nF,. This remark leads us to believe that many subsets even
in the case of the unit interval have no natural structure in the sense
of Aumann. This leads us to define naturality in a different way. A sepa-
rable admissible structure F on an admissible family F is Blackwellian
if no proper separable substructure of F is admisgible. It is clear that
if the set Z, that occurs in the proof of Theorem 1, is a Blackwell space,
then the structure we get on C, in that theorem is Blackwellian (for details
regarding Blackwell spaces, see [3]). Thus the existence of Blackwellian
structures seems to be connected with Blackwellian selections. But,
however, we feel that the existence or non-existence of such structures
should better be treated directly rather than through selection theorems —
as one knows that, in general, nice selections are difficult to obtain.

We conclude thig section with a slight generalization of Theorem 1.
Let now (X, B) and (Y, C) be countably generated and F a collection
of measurable maps from X to Y. By treating X and Y as pseudometric
spaces or by looking at the canonical separable spaces (that is, the spaces
of atoms with quotient structures), one can define the notion of bounded
Borel classes and by applying Theorem 1 one can prove

THEOREM 3. The following are equivalent:
(i) F is of bounded Borel class.

(*) The author’s original proof of a part of this theorem used the continuum
hypothesis. The present modification, without using it, is due to C. Ryll-Nardzewski
and is represented here with his kind permission.
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(ii) F s admissible.
(iii) 7 has a countably generated admissible structure.

(iv) For F, its power set is an admissible structure.

4. The general case. Let us assume (X, B) to be any Borel space
and (Y, C) to be separable and F' a collection of measurable maps from
X to Y. Say that F is of bounded Borel class if there is a countably gene-
rated sub-algebra B, c B such that

(1) f in F implies f is B, - measurable;

(ii) F' is of bounded Borel class w.r.t. (X, B,) and (Y, C).

We shall now prove the following

THEOREM 4. The following are equivalent:

(i) F is of bounded Borel class.

(ii) F' is admissible.
(iii) F has a countably generated admissible structure.
(iv) Power set of F is an admissible structure for F.

Proof. To show that (i) = (ii), take a countably generated B, c B
as given by the boundedness of F and apply theorem 3 for the collection
F from (X, B,) to (Y, C). Since (Y, C)is separable (ii) = (iii) is obvious
(just make use of the fact that every set in a product o-algebra is in
the o-algebra generated by a countable number of rectangles.) By using
the same arguments, given a countably generated admissible structure
F on F we can find a countably generated B, = B such that the map ¢
is F x B, measurable. This B, is the required one to show that (iii) = (i).
Of course, (iii) = (iv) and (iv) = (ii) are trivial. This proves the theorem.

A theorem similar to the above can be stated in case (Y, C) is coun-
tably generated and not necessarily separable — just as theorem 3 was
formulated from theorem 1.

We now pass to the general case and do not assume (Y, C) to be
countably generated. Let C, be any countably generated substructure of
C. We say that F is of bounded Borel class relative to C, if the collection F
regarded as maps from (X, B) to (Y, C,) is of bounded Borel class in
the previous sense. We now have a complete solution to our problem in
the following theorem:

THEOREM 5. Let (X, B) and (Y, C) be any two Borel spaces and F
a collection of measurable maps from X to Y. Let C have a generator of
cardinality < 8, an infinite cardinal. The following are then equivalent:

(i) F is bownded for any countably generated substructure of C.
(ii) F ¢s bounded for any finitely gemerated substructure of C.
(iii) For F its power set is an admissible structure.

(iv) I is admissible. ,

(v) There is an 8 generated admissible structure for F.
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Proof. By using theorem 4 and standard arguments the following
string of implications can be observed: (i) = (ii) = (iii) = (iv) = (V) = (i).

Though the naturality or Blackwellian nature of structures can be
defined even in the non-separable case, the unhappy state of affairs
existing in the separable case has refrained us from doing so — for we
had just to be content with the formulation and without even an epsilon
insight into the problem.

The author is thankful to Dr. Ashok Maitra for his encouragement
and advice.
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