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A FACTORIZATION LEMMA AND ITS APPLICATION
TO REALIZATION OF MAPPINGS AS INVERSE LIMITS

BY

M. STROK (KATOWICE)

The aim of this paper* is to prove a factorization lemma for map-
pings (1) of compact metric spaces into polyhedra and to apply it in proving
that each mapping between compact metric spaces can be realized by a se-
quence of mappings between some polyhedral expansions of given spaces.
Such a result was stated by Kaul in [2], but in our paper we consider
the case where the given mapping is onto and we prove that mappings
of the realizing sequence can also be constructed to be onto; e.g., the known
theorem of Freudenthal [1] on polyhedral expansions with onto mappings
is contained in our theorem.

1. Introduction. A mapping f: X—>Y is said to be realized by a se-
quence of mappings f,: X,—»Y,, n =1,2,... (sec Kaul [2]), if there
exist inverse sequences

(1) X« X, <> ...
and

112 (13
(2) Y, < Y, <

whose limits are X and Y, respectively, and if for each z¢ X and
n =1,2,... there is

(3) lim o (f, (7, (2))) = ouf((2)-

The question (see Marde8ié¢ [3], Remark 2, p. 247), which is still
open, is whether any mapping f can be realized as a mapping induced
by a sequence f,, [, ... (induced means that lim in (3) can be dropped).

* This paper is a part of master’s thesis written under the guidance of
Prof. J. Mioduszewski. '

(1) Throughout this paper all mappings arc assumed to be continuous.
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The following two notions are taken from [2]. The second notion
is modified here by deleting one of the conditions.

Let a and 8 be barycentric mappings of spaces X and Y into polyhedra
(P, T) and (P, T'), respectively, and let g be a mapping of X into Y.

A mapping ¢’ of P into P’ is said to be a carrier mapping with respect
to g if, for every ze X,

g’ (carp ma(@) = carp mB(9(2),

where carp p denotes the carrier of a point p in a polyhedron (P, T),
i.e. a simplex se 7 such that p lies in the geometrical interior of s.

Let U,, U,, ... be a sequence of finite open coverings of a space X.
An inverse sequence {N(U,); =, ,}, where N(U,) denotes the nerve
of U,, is called an auxiliary inverse sequence associated with X if =, ,
and N(U,) satisfy the following conditions:

(a) mesh U,,—0 if n —o0;

(b) 7yy1 0 N(Upy) >N(U,) is a carrier mapping with respect to
the identity on X;

(c) if o,, is an arbitrary simplex from N(U,,), then, for every natu-
ral n, diam =, ,(0,) >0 if m —oo.

In this note the following lemma is proved:

FACTORIZATION LEMMA. Let X be a compact metric space. If there are

given polyhedra (P,T) and (P',T'), mappings
f: X2, P and f': X2 P,

and a positive number ¢, then there exist a polyhedron (@, S) such that
dim Q@ < max(dim X, dim P, dim P'),

an e-mapping g: X %Q, and simplicial mappings

a: (@, 8) =22 (P, T) and a':(Q,8) =22 (P, T),

which are carriers with respect to the identity on X.

Rematrk 1. From the fact that » is a carrier mapping with respect
to the identity on X it follows that, for each x¢ X, n{g(x)) and f(x) are
in the same simplex of 7', which implies that the diagram

X1 .p

is (mesh T')-commutative (of course, the same is also true for »" with respect
to f/ and P’).
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Remark 2. It follows immediately from the proof of Factorization
Lemma that if we do not require mappings # and =’ to be simplicial, then
the polyhedron @ can be constructed to have the dimension not greater
than max(dimX, 1).

Analogous factorization lemmas are given in Freudenthal [1] (see
Hilfssatz 13, p. 191), and in MgrdeSié and Segal [4] (see Lemma 4): in
[1] for f being irreducible in a sense defined there, and in [4] for X being
a continuum (with a somewhat stronger thesis, so that the result is not
comparable with our lemma).

As an application of our Factorization Lemma we get

THEOREM. Let X and Y be compact metric spaces and let f: X—>Y
be a mapping. Then there exist

1° auwxiliary inverse sequences {N(U,); %, and {N(V,); mn}
associated with X and Y, respectively, such that dim N (U,) < dim X,
dmN(V,)<dimY, =xn,, and y,, are simplicial mappings of N(U,)
and N (V,,), respectively, onto a certain subdivision of N(U,) and N(V),,
respectively, and

2° a sequence of simplicial mappings f,: N(U,)—>N(V,) which
realizes f.

In addition, if f i8¢ onto and (a) if we replace the condition dim N (U,)
< dimX by the condition dimN(U,) < max(dimX,dimY,1), or (b) if
we do mot require mappings f, to be simplicial, then mappings f, can
be constructed to be onto.

The theorem is a stronger version of Kaul’s Theorem A [2]. In
particular, we assert that the mappings =, , and ¥, , are onto, and,
if f is onto, so are the mappings f,.

2. Proof of Factorization Lemma. Let
max (dim X, dim P, dim P’) > 0

(otherwise the proof is trivial).

In view of the symmetry of hypotheses concerning f, P, T and
f, P, T, if whatever will be defined (will be true) for one of these triples,
for given ¢, ¢ and @, then it will be assumed to be defined (to be true)
also for the other; if the symbol of the notion defined for f, P, T is a, then
the corresponding symbol for f’, P', T’ will be denoted by a’, and wice
versa, 8o a’’ will be meant as a.

Let y be a Lebesgue number for the covering {f~!(Styb): b is a vertex
of T} of X and let ¢ = 3min(y, y’, ).

Let 8,, ..., 8,, be all maximum simplices of T such that the dimension
of each of them is greater than 0, let a,, ..., a,, be a certain choice of ver-
tices from s,, ..., 8,, and let ¢, and U% (j < 6, i < m) be a positive number

§ — Colloquium Mathematicum XXIX.2
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and open sets, respectively, such that ¢, < ¢,
ClU;cU;, CUUILTU) cU; < ClU; c U; «c Ol T; «U§ = C1 U5 < f! (int 8;),
where ints; is the geometrical interior of s,,
ClUinCIT? =@,
card U} = card U} = continuum, ClU; # U{, diam U} < ¢,,

dist (S, Fr £~ (ints,)) > 2¢;
and
CLUSACI[(TY) L (TS u..u(T5)] = @
Let
Y=X—-[U}v...0U50u(U) u...u(T:)].

Let {Vyy..., Vp, V1y..., V5} be a covering of ¥ such that all V,
and V; are open subsets of

X—Cl[U}u...u UL U(TY u...u(T4 ]

such that their diameters are less than e,, each point of X belongs to at
most n»+1 of them, where n is a certain integer not greater than dim X,
and @ #V;c U for 1 =1,2,...,m

Let f;, fi (1<m) and g; (j<p) map X into I =[0,1] as follows:

fiCLUy) =1, fiCU;-TU3) = {1}, fi(X-T3) = {0},
iy =1, fiCry) ={13}, [f(X-7T)) = {0},

D »
g;(X—7V;) < {0}, Zgj(m)+2 g;(a;) #0 for every ze Y.
i=1 j=1
Let N denote a realization of the nerve of the family {V,, ..., V,, ¥V,
» V5 } lying in a (2n 4-1)-plane ¢ ¢ R*"*2, Let s(V;) denote the 1 -simplex
lymg in R***2 which is perpendicular to o and intersects o at the point
Vi, and let all opposite vertices V of s(V;) and V‘ of 8(Vy) lic on the
(2n+1)-plane o, which is parallel to o.
Let
N, =8(V)u...us(V,)us(V)u...us(V,)UN.

Now we shall define a mapping » of X into N,.
1° If @ Cl{X — (Tfu...u U5 u(U3) U...u(U%))), then h(z)e N and
a V;-coordinate hy (2) of h(x) is given by the formula

1
9s(@) +fi(x) for i< m,
b=
- =
! 9:(x) for .
T or m<i1<p,
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where

» »’ r r
A = Yg@+ Y g@+ D i@+ D (f1) (@)

J=1 j=1 F=1 j=1
(hy;.(#) analogously).
2° If 2¢Ol U; (¢ < m), then

fi@) fi(@)
fi@ +fi@)’ fi(x)+fi(w)

(analogously if xe Cl(U3)).

Now we shall show that % is an ¢,-mapping.

Let h(x) = h(y).

Case (a). There exists an ¢ such that x and y belong to U¢ or to (U§)'.
Then o(z, y¥) < diam U¢ < ¢, (respectively, o(z, ¥) < diam(U$) < &,).

Case (b). The points # and y belong neither to the same U§ nor to
the same (U%)'.

If there exists an ¢ such that f;(x) # 0, then xze U, fi(y)+g:(y) # 0
and, because f;(y) = 0 (which follows from y¢ US), we get consequently
g:(y) # 0. Then ye V,, and « and y belong to US, because V, = U} for
t < m. A contradiction. Thus

file) =fiy) = (fi) (@) = (1) (y) =0 for i<m and &' <m'.

Consequently, g;(z) = g;(y) and g;(v) = g;(y) for every j<p and
j' < p’, and there exists a j, (or j;) such that g; (#) # 0. But g; (X —Vy)
< {0}. Thus »,yeV, and diamV; <e¢,. This completes the proof in
case (b).

Since h is an &,-mapping, there exists a 6 > 0 such that

(i) if A <« N, and diamA4 < 8, then diamh~'(4) < 2¢,.

Let 8, be a triangulation of N, such that, for every vertex b of 8,,

diam Stg (Cl Stg b) < 8.

h(@) = ( )esm)

Let 8; be a triangulation of ¥, which agrees with §; on N and which
has only three vertices on 8(V,;): the vertex V,, the first (if we count from
the vertex V,) vertex b; of 8, which is different from ¥V, and f7, (if such
a vertex does not exist, then let b; be the centre of 8(V,)) and the ver-
tex I},. Now we improve h in order to get a 2¢-mapping A, of X onto
a certain subpolyhedron (N, 8;) of (N,, §,). This can be made in a stand-
ard way by applying successively sweeping of maximum simplices onto
their boundaries if there exists an interior point of such a simplex not in
the image of X. So we get

hy: X 22, N,.
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We have

(ii) for every vertex b of §;, diam Stg b < J;

(iii) diamhi*(s(Vy)—{V}) < & <e.

Note that (ii) and (iii) imply

(iv) hy'(Stg, V) = f~' (ints,).

Let 8; denote the image of s; under a certain linear embedding of s,
into o, such that 8; and 8; do not intersect for ¢ 5 j, and f’, corresponds

to ay under this embedding (j < m).
Let

~

Q = N,u8,u...U8,U§U...US,,

and let 8 be a triangulation of @ which agrees with 8; on N, and with the
triangulation (7'|s;)" on 8; (j < m).
We define a mapping

@: N2 onto>Q

in the following way:

1° ¢(2) = x for xe NyNo;

2” @ maps homeomorphically the are V;b; onto the arc V; f’,-;

3° ¢(b, 1.7,-) = §; (and analogously on V.b; and b; V).

Let g = goh, (in order to get the conclusion of Factorization Lemma
in the form of Remark 2, it suffices to define g to be h,; in this case the

remaining part of the proof is as below with some obvious simplifications).
It follows from (i)-(iv) and from the definitions of ¢, and 4 that

(1) if b is a vertex of 8 which lies on o, then
diam g7'(Stgb) <e and ¢ '(Stgb) = f}(Stpe)

for some vertex ¢ from T;
(2) diam g7 3,0 Vi Vi—{Vi}) < &;
(3) 97" (StgV;) = f~'(intsy).
Thus ¢ is an e-mapping of X onto Q.
Now we shall define a simplicial mapping n of (@, 8) onto (P, T).
Let b be a vertex of 8. Then
1° if be (Stpa)”, b = ¢, where a and ¢ are vertices of T, then n(b) = c;
2° a(V)) = a;;
3°if be Nyno—{Vy,..., Vp, Vq,..., V,}, then n(b) = ¢, where ¢ is
chosen for b as in (1).

It is easy to verify that the just defined mapping of the set of ver-
tices of @ into P has a simplicial extension and that = satisfies theses of
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our lemma (7’ being defined according to the convention made at the
beginning).
Thus the proof of the lemma is complete.

3. Realization of mappings as inverse limits.

LEMMA 1 (cf. [2], Theorem 1). The inverse limit P of an auxiliary
inverse sequence {N(U,); 7, .} associated with a compact metric space
X is homeomorphic to X.

Proof. Let o,(x) denote the carrier of « in N(U,). Let
O’(.’L‘) =lim{0'n($); 'nm,nlo'm(w)}'
-~

Clearly, o(z) # 9. Let p = (p,, P2y ...) and ¢ = (¢, ¢,, ...) be points
of a(x). Then p,, q,¢ nm’n(om(m)) for every m > n. It follows from con-
dition (c¢) of the definition of an auxiliary inverse sequence that

0 (P 4n) < diam 7, (0, (2)) >0 if M —o00.

Hence p, = ¢, for every n and o(x) = {p}.

Now we define a mapping a: P—»X by pufting a(p) = #, where
o(z) = {p}.

It follows from Lemmas (2.1) and (2.4) of [2] that a is a homeomor-
phism.

LEMMA 2 (cf. [2], Theorem 2). Any compact metric space X has an
auxiliary inverse sequence {N(U,); 7, .} associated with it and such that
dimN(U,) <dimX, and =,, is a simplicial mapping of N(U,) onto
a certain subdivision of N (U,) (for every m,n such that m > n).

Proof. The proof is trivial in the case of dimX = 0, and in the
case of dim X > 0 it suffices to apply the procedure of the proof of Theo-
rem 2 from [2], applying our Factorization Lemma.

Combining Lemmas 1 and 2 we obtain the known Freudenthal
Theorem. '

The proof of our Theorem consists in applying the procedure from
the proof of Theorem A from [2] together with Lemmas 1 and 2 and our
Factorization Lemma. In order to get the additional conclusion in
case (b), Remark 2 should be taken into consideration.
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