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CONVERGENCE OF POISSON INTEGRALS
ON SEMIDIRECT EXTENSIONS OF HOMOGENEOQOUS GROUPS
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In this paper we continue to study harmonic functions with respect to
leftinvariant hypoelliptic operators Lon a class of solvable Lie groups S. As in
[4] our approach is motivated by the classical theory of harmonic functions on
non-compact symmetric spaces.

A symmetric space X = G/K may be identified with the group N4, where
G = NAK is the Iwasawa decomposition of G. After this identification the
Laplace-Beltrami operator is a leftinvariant operator on NA. For this reason
the theory of harmonic functions is often formulated not in terms of
G-homogeneous spaces but in terms of solvable Lie groups NA and their
subgroups. Since the groups N have a natural structure of dilations, such an
approach proved to be very useful in some cases and suggests to reformulate
classical problems for leftinvariant operators on a larger class of spaces
— solvable groups S = NA, which are semidirect products of homogeneous
groups N and Abelian groups A.

The problem which has been of big interest in the case of symmetric spaces
is the behavior of Poisson integrals Pf(s), where s approaches a boundary of
a compactification. The maximal compactification X of a symmetric space
X consists of X and a finite number of boundaries. Each boundary is an infinite
union of symmetric spaces of lower dimension called boundary components.
One of them is the distinguished boundary B = G/M AN which is compact and
whose components are points. If fe I! (B), the Poisson integral Pf has a natural
extension Pf to X, which coincides with f on B. When f'is continuous, so is P,
and Pf converges to Pf at the boundaries of X. For fe I?(B), p > 1, we have the
admissible convergence of Pf at almost all components of each boundary. This
has been proved by Sj6gren [14] and has finished more than 15 years’ study of
such problems ([10]-[12], [15]).

We have generalized the admissible convergence for the groups S and
leftinvariant hypoelliptic operators on them. Although we do not use the
language of compactifications, we can define some subgroups of S which
correspond to boundaries and boundary components. Throughout this paper,
S is a solvable Lie group such that
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(i) the Lie algebra s of S is a semidirect sum of a nilpotent algebra n and
an Abelian algebra q;

(i) the operators adg|, Hea, are diagonalizable;

(iii) there is an Hea such that the operator adg|, has strictly positive
eigenvalues.

We study leftinvariant operators of the form

L=X} +...+ X}+X,,

where X,,....X, X,€s and X,,...,X; generate s. Bounded L-harmonic
functions are exactly Poisson integrals Pf of L*-functions f defined on
a subgroup N, (L) of N — the maximal (“distinguished”) boundary for L (see
[4]). We define decompositions N = N, N,, A = A, A,, where N,, N, A, A,
are Lie groups and N, < N,(L). The group S, = N, A4, satisfies conditions (i),
(i1), and (iii), so is of the same type as S. On S, we consider the operator L,
which is a projection of L on S, defined in a very natural way. The group
Non N, (L) is the maximal (“distinguished”) boundary for L, that is,
Ly-harmonic bounded functions on S, are Poisson integrals of functions
feL*(N(L)n Ny).

The groups N, S, for various N, correspond to boundaries of symmetric
spaces and x,S, x,€N,, are “boundary components”. We prove that if
feI?(N,(L)), p > 1, then Pf converges to the Poisson integral P,f on N, S for
almost all x, e N, in the sense which generalizes the admissible convergence.
Moreover, P f restricted to S, is an L,-harmonic function. The proof relies on
maximal function estimates and follows the ideas of Sjogren [14]. The
estimates are possible because the kernels P, P, are smooth functions; they
have a positive moment and decrease at infinity like a negative power of an
invariant Riemannian distance.

The author is grateful to P. Sjogren for suggestion to consider kernels
P,(y) (see (3.2)) as well as to A. Hulanicki for his generous assistance. The paper
was written during her stay in Strasbourg and in Athens. She would like to
express her gratitude to both hosts: Jacques Faraut and Ray Kunze.

1. Preliminaries. Let s be a real solvable Lie algebra which is a semidirect
sum

s =nPa

of a nilpotent algebra n and an Abelian algebra a. We make the following
assumptions about s:
(1) The operators ady|,, H €aq, are diagonal in a basis E,,...,E, of n, i.e,,

[H,E]=AHE, i=1,...,n,

for some A,ea*.
(ii)) There is Hea such that

AH) > 0
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for Hea and ied ={4,,...,4,}.

(iii) There is a basis of 4 over R such that every Aed is a linear
combination of the elements of this basis with rational coefficients.

These assumptions are satisfied by solvable Lie algebras which appear in
the Iwasawa decomposition of semisimple Lie algebras and, additionally, all
roots 4,,...,4, are then linear combinations with integer non-negative coef-
ficients of simple positive roots. Here we require only that the linear spaces
spanned by 4 over the fields of rational and real numbers have the same
dimension. A set of functionals having this property will be called rational. 1t is
a technical assumption necessary for Sjogren’s method and now we do not
know how to omit it.

Let S, N, A be connected and simply connected Lie groups corresponding
to the algebras s, n, a, respectively. S is a semidirect product of N and A4: if

x =exp() x;E)eN,

ji=1

then

axa~! = x* = exp( ), exp(4;(loga)x,;E),. acA.
=1

J

In particular, N is a homogeneous group. This immediately implies the
following lemma:

(1.1) LEMMA ([4]). Let n = n,@n, be the sum of its subalgebras n,, n, invariant
under the adjoint action of a and let N,, N, be the corresponding subgroups.
Then :

(1.2) I: N, xNy3(y, z)>yzeN
is a diffeomorphism.

We will write N = N, N, if (1.2) holds and we call N,, N, homogeneous
groups.

Now we remind briefly basic facts about invariant Riemannian metrics on
Lie groups which will be needed later. Let G be a connected Lie group with the
rightinvariant Haar measure m. A non-negative Borel function y on G is called
subadditive if it is bounded on compact sets and

(1.3) () y(xy) <Y(x)+y () for x,y in G, (i) Yy(x~!) =y(x), xeG.

If instead of (i) we have

Yy(xy) <Y (x)y@y) for x, yeG

and also Y(x) > 1, we say that y is submultiplicative.
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Let || || be a leftinvariant Riemannian metric on G and t the correspond-
ing distance (from the identity), i.e.,

1
76(x) = inf { |16(8)ll s dt,
0

where the infimum is over all C!-curves in G such that ¢(0) = e, a(1) = x (cf,
e.g., [8]), t¢ is subadditive and for every non-negative function ¥ on G, which is
bounded on compact sets and satisfies (1.3) (i), there is a constant C such that

(1.4) Y(x) < C(tg(x)+1) for all xeG

(cf. Proposition 1.2 of [8]). Consequently, for every submultiplicative function
Y on G there is a constant C such that

1.5) Y(x) <exp(C(rg(x)+1)), xeG.
If G’ is a subgroup of G, by (1.4) we have
(1.6) 16(%) < C(rg.(x)+1)

for a constant C >0 and all xeG'.
If « > 0 is sufficiently large, then

(1.7) [ exp(—azg(x))dm(x) < oo
G

(cf. [8]).

Let B be an automorphism of G and B* its differential at the identity. For
every xeG
(1.8) 16(B(x)) < |1B*|| 74(x),

where |B*|| = sup{||B*(w)|:we T,G, |w| =1} (see Proposition 1.8 of [4]).

Now we rewrite from [4] a few properties of Riemannian distances on
N and its homogeneous subgroups. If | ||, is a leftinvariant Riemannian metric
on a homogeneous subgroup N, of N, and 1y, a corresponding distance, then
there are positive C, f depending on N, such that

(1.9) Iwl < C(1+7y,(expw)f for weT,N,

(cf, eg. [4]).
The homogeneous structure of N yields here an inverse estimate.

(1.10) LeMMA ([4]). Let N = NN, and 1y, ty,, Ty, be invariant Riemannian
distances on N,, N,, N, respectively. Then there are C > 0, B > 0 such that

(L.11) T, 0)+ 1y(@) < C(1+ 742}
for all y in N, and z in N,

Now, let N = N N, and let 7y, Ty, Ts be arbitrary invariant Riemannian
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distances on N,, NyA and S. If, in addition, N, is a normal subgroup, then
there is a constant C such that

(1.12) log(1 + Ty, () + Tw,4(20) < C(z5(s)+ 1),

where yeN,, ze N,, ae A and s = yza (see [4] and [6]).
Finally, let us remark that since every nilpotent Lie group is of polynomial
growth [5], there is a large a such that

(1.13) [ (1+1y,00))*dy < 0.

N1
2. The main theorem. Let

L=Xi+...+X}+X,
be a leftinvariant operator on § such that X,,...,X; generate s, and so Lis
hypoelliptic. Let Z be the image of X in a by the mapping
s—s/n=a.
We define two sets
4,(L)={Aed: M(Z)<0} and A4d,(L)=4\4,(L)
and two subalgebras

nL)= @ n* and ny(l)= @ nt
Aed(L) Aedo(L)
where
n*={Yen: V [H, Y] = AH)Y}.
Hea

Then n = n,(L)®ny(L) and
2.1) N = N,(L)N,(L),

where N,(L) =expn I(L)- and N,(L) = expngy(L).
Let 4’ be a subset of 4 including 4, and such that if 4, ne 4’ and 1+ ne 4,
then A+ned’. We assume that for some 4’
(2.2) a(4)={Hea: V A(H)=0, V A(H)> 0} #0.
lea’ ¢4

If 4, = O, there is always a set 4’ such that (2.2) holds, because by assumption
the set

{H: V¥ AH) > 0}
Aed

is non-empty, and so is its boundary. Such a situation occurs for the
Laplace—Beltrami operator on a symmetric space. If 4, = @ and all elements of
4 are non-negative combinations of a basis IT of 4, then every set A’ which
satisfies (2.2) consists of non-negative combinations of a subset IT' of I1. If 4, # @
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it may happen that there is no set A’ satisfying (2.2). For example, let a = R?,
4,5 4, be an arbitrary basis of (R*)*, 4 = {4,, 4,, —A;+4,}, 4, ={4,}.
Let a;, — a be a subspace such that
(@) a,na*d)#9; (i) a, = (4);

(2.3) (iii) (4\4')],, is rational.

The following simple proposition shows that a, = (4')* satisfies (2.3).

(2.4) PrOPOSITION. Let V be a linear space over R, A a rational subset of V*, and
4’ < A. Then A\A'| 4L is a rational subset of ((4')')*.

Let now a be an arbitrary linear complement of a, in aq,
A, =expa,, A,=expa,,
A
=@ n, n,=@ns.
Aed\4’ Aed’
Then n,, n, are subalgebras, N, =expn,, N, =expn, are homogeneous
subgroups, and N = N, N,. Moreover, N, is a normal subgroup because

A+n¢Ad if A¢A and 5, A+neAd. Since by (2.3) elements of A, and N,
commute, N, A, is a normal subgroup of S and

Let s = x, xqa,a, With x, e N, xo€ Ny, a, € A,, ase A,. We define projections
My:S—>N, and IIg: S-S, by

Iy (s)=x; and IIg (s) = xya,.

The closure L of L (restricted to C®(S)) in C,, is the infinitesimal generator
of a semigroup of probability measures {u},>o (cf., e.g., [9]). Since Mg, is
a homomorphism, {II (1)} is a semigroup on S, with the infinitesimal
generator L,, where

Ly = (X7’ + ... +(X)*+ X0,

and X;, i=0,...,j, is the projection of X; on s, = s/(n;@a,). X1,...,X]
generate s,, and L, is also a hypoelliptic operator.

The group S, is of the same type as S. Its algebra s, is a semidirect sum of
n, and a,, the adjoint action of a, on n is diagonal. If A(H) > 0 for Ae 4 and
H=H,+H, H €a,, Hy€a,, then A(H,) = A(H) for Ae 4, and hence adg|,,
has positive eigenvalues.

Let Z=2,+2Z, Z,€aq,, Zyea, Z, is the projection of X onto
ay = so/Ng, A(Z) = M(Z,) for Ae A, and so

{A€ed: MZ,y) <0} = 4'\4,.
Therefore
n(Ly)= @ nt, ny(Ly) = ny(L).

Aed’\4o
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Let N, =expn,(L,). Then N,(L)=N,N, and N, = N,N(L).

We study L-harmonic functions on S and L,-harmonic functions on S,
that is, the functions F such that LF = 0 or L F = 0, respectively. It has been
proved in [4] that there is an integrable, smooth, bounded function P on N, (L)
called a Poisson kernel such that bounded L-harmonic functions on N are
precisely Poisson integrals

(25) PO = | f(Myu(sw)Pa)du,
Ni(L)

where fe L*(N,(L)) and Iy () =u, if s=wu,uya, u,€N,(L), uge Ny(L),
a€ A. Similarly, if A’ # A,, then on N, we have an integrable, smooth, bounded
kernel P, and Poisson integrals

Pog(so) = A_'f g(nnz(soz))P o(2)dz,

where ge L*(N,) and ITy,(s) = z if s = yzusa, ye N, zeN,, uye No(L), ac A.
Every bounded L,-harmonic function on S, is equal to P,g for a ge L*(N,). If
4, = 4" and N, = O, then by a theorem of Birgé and Raugi [2] there are no
bounded harmonic functions on S,,.

L-harmonic bounded functions F are, in particular, fi,-harmonic in the
sense of Azencott and Cartier [1], Guivarc’h [7], and Raugi [13]; hence

(2.6) F(s) = £ F(ss')dji,(s).

Analogously, an L,-harmonic bounded function G on S, satisfies
G(so) = | G(sso)dM 5, (i;)(so)

So

because (I, (1,)) = g, (4,). By (2.15) of [4], P and P, are *weak limits of

Oy,w)((E)*")  and Oy, (s (4,)*"),
respectively, and so

2.7 Py(z) = | P(yz)dy.
Ny

If fe?(N,(L)), Pf given by (2.5) is an L-harmonic function in view of
Theorem 3.17 of [4]. We define now integrals Pf for fe I’(N,(L)). If N, # ©
and s = x,x,a,ay, X, EN,, Xxo€N,, a,€A,, age A, we write

2.8) Pof(s) = Nj f(x My, (X0 802) Po(2)dz.

P.f is defined for almost all s, and if x, is fixed, P,f is Ly,-harmonic as
a function of x,a, (Theorem 3.17 of [4]). If N, =@, then

Pyf(s) =f(HN1(L)(S))-
Let a, ea,. We say that loga, » — oo if A(loga,)— — oo for all Ae 4\4'.

4 — Colloquium Mathematicum 58.1
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Conditions (2.3) guarantee that this definition makes sense.
Now we are ready to formulate our main theorem.

(2.9) THEOREM. Let K, c N, and K, < S, be compact sets and fe I?(N (L)) for
a p>1. If loga, > —o, a,€A,, then for ae. seS

(2.10) Pfisa, y5o) - Pof(sso)
uniformly with respect to yeK,, sa€K,.

Remarks. 1. “Uniformly” means that there is a measurable set M < N,
with the complement of the Lebesgue measure 0 satisfying the following
condition:

For all x, e M, ¢ > 0 and any compact sets K, < N,, K, < S, we can find
aj€ A, such that

|Pf(sa, yso) — Pof(sso)l < &
whenever yeK,, s,€K, and i(a,) < A(ay) for all Aed\4".

2. Theorem (2.9) is a generalization of Theorem (4.1)a of [14]. Although we
do not construct a compactification of S, we define spaces which correspond to
boundaries and boundary components of the maximal compactification of
a symmetric space. The group N,S, corresponds to a boundary and x, S,
x, € N,, are “boundary components” diffeomorphic to S,, which is a solvable
Lie group of the same type as S but of a lower dimension.

3. In the case of a symmetric space with the set of simple positive roots I,
a, is the annihilator of IT' < II. Since we do not assume that the elements of
A are positive combinations of a basis of 4, we only require for the space a, to
have the weakest properties necessary to formulate Theorem (2.9). They are
included in (2.3) and

(i) guarantees that we can define a convergence to —oo in a,;

(i) implies that N, is 1ncluded in the maximal boundary N,(L), and 1f
a,eA,, xoeN,, then a,xq,a; ! = x;

(iii) is necessary to apply P. Sjogren’s method and we do not know
whether it is possible to remove it.

Proof of Theorem (2.9). Obviously, it is sufficient to prove the theorem
for se N,. Since N, is a normal subgroup and a, x, = x,a, for x,e Ny, a, € A4,,
we have

Pf(x,ay,s0) = I f(xx Iy, (aysey)y, (soz))P(yz)dydz

N1 X N2

and ITy (ay,soy) = ay,soyso 'a™ !, where x,, y, € N,, a€ A,,.so€S,. Therefore,
if loga— — oo, then ITy (ay,s,y) converges to the identity element of N; and

Pfx,ay,so) = Pof(x, o)
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for a bounded continuous f.
Let

Rg, ko S(x1) = sup {|Pf(x,ay,50) — Pof(x,So)l: a€A,, y,€K,, so€K}.
We shall prove that, for every p > 1, Rk, x,: I(N,(L)) = IZ(N,) is a bounded
operator, and then the theorem will follow by a standard approximation
argument.

Since

RK:.K&f(xl) s M,f(xl)"'M"fxl)’
where
M’'f(x,) = sup{|Pf(x,ay,s0)l: a€A,, y,€K,, so€K,},

M"f(x,)= sup |Pof(x,5o)|,

s0€So

it is sufficient to prove that M’, M": I?(N (L)) — I?(N,) are bounded operators,
which is done in the next two theorems.

(2.11) THEOREM. Let fe I’(N, (L)) for a p > 1 and let K, be a compact set in S,,.
Then

M": E’(NI(L))—»B’(NI)
defined by
M"f(x,) = sup |Pqf(x, so)l

so€So
is a bounded operator.
Proof. Let

F ;c,(so) = I |j(x1H N;(Soz))IP o(2)dz.

N2

F,, is finite for almost all x, e N,, and then L,-harmonic as a function on S,
A Harnack inequality [3] implies that there is Cx > 0 such that if s, € K, then

F,,(50) < Cx, F,(e)

1

for almost all x,eN,. Let p~*+q~! =1. Since Pyel4, q> 1, we have

M"flx,) < Cg, | f(x,2)| Po(2)dz
N2
< Cg, ||Po||L¢(Nz)(I Iflx,2)|Pdz)*/P.
N2

Therefore

"M’:f"LP(Nx) < Cxo "P0"L¢(N2) "f"LP(Nl(L)P

(2.12) THeOREM. Let feI?(N (L)) for a p>1 and let K, = N,, K, < S, be
compact sets. If

M'f(x,) = sup {|Pf(x,ay,s,)l: aeA,, y,€K,, soeK,},
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then there is a constant C,> 0 such that for every fe I?(N,(L))

(2.13) IMSllLevy < CpllflLevawy-

Proof. In view of (2.3) we can choose a basis H,,...,H, of a, such that
A(H) is integer for AeA\A', j=1,...,1. We write

1 1
[a] = exp(z [a,.]Hi) if a= exp(z a,-H,-).
i=1 i=1
Let
K ={ay,;so: —1<a;<1, y,eK,, s0€K,}.

Since K is a compact set and Lis leftinvariant, a Harnack inequality [3] implies
that there is a constant Cy such that

PIA(xyay,50) < Cx PUA(x,[a)).

Let Y;,...,Y, be a basis of n, consisting of eigenvectors for the action of a, that
is, [H, Y;] = 4;(H)Y, for Hea and li,,...,l,-z are ordered so that if 4, +4;, = 4,,
1<j, k, r <y, then r > max(j, k). Then lin(Y;,...,Y,) is an ideal of n,,
i=1,...,x, and therefore every ye N, can be written as

@.14) y= 1 exp0 )
(cf., e.g., [14]). Hence
215 Lalbtel ™" = [] exp(y,exp (i, logla)¥)

and 4, (log[a]) is integer for j=1,...,x. Since z[a]™' = [a] 'z, in view of
(2.15) we have

(2.16) PI(x,[a)) = | Ufix,[alyla]l”'2)| P(yz)dydz

N1 xN3
< sup ." lf(xl‘sh(}’)z)lp()’z)dydz = Mf(x,),
heZX Ny xN;
where h = (h,,...,h,)e Z* and
(2.17) 51.(‘1_[1 exp(y; Y;)) = ﬁ exp(y;e™Y).
- i=1

Let now gelI?(N,) for a p > 1. For every zeN,, x,€ N, we define
M.g(x,) = sup | g(x,3,(y)) P(yz)dy.
heZX N,
In the next section we shall prove that for a fixed p there are C, « > 0 such
that for every ze N, and every geI?(N,)

(2.18) IM.gllLonyy < C(1+7x,(2) "Gl Loeyy)-
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Now we are completing our proof assuming (2.18). By (1.13) there is g, such
that for g > q,

bi= [ (1+1y,(2)) *dz < .
N2

Let ¢ > gy, g '+p~! =1 and fe I?(N,(L)). The function f(y) = f(yz) belongs
to I?(N,) for almost all ze N,. Then M,f, is defined and

Mf(x,)) < [ M_f,(x,)dz < b(| (1+7y,(2)*IM. L, (x,)Pdz)"/
N2 N2

for a.e. x, e N,. Hence, by (2.18),

I Mfll Loy < Chy I llLowvyiLy

which in view of (2.16) gives (2.13) for p < p,, where p;'+qo! = 1. But for
p = o (2.13) is obvious, which yields the assertion.

3. A maximal function. This section is devoted to a proof of the following
theorem:

(3.1) THEOREM. Let fe I’(N,) forap > 1,xeN,, ze N,, let §, be as in (2.17) and
M_f(x) = sup [ f(x5,(y))P(yx)dy.

heZX Ny
Then there are C, a > 0 such that for every ze N, and every feI’(N,)
IM_ fllLeavy < C(1+7x4,(2) ™% f lonsy)-

First we are going to remind a few properties of P proved in [4] and to
derive analogous ones of kernels P,, where

(3.2) P,(y) = P(yz).

Properties of the kernel P:
There are C, ¢ > 0 such that

(3.3) P(u) < C(1+ 1y, @)~
(Theorem 4.4 of [4]);

3.4 Y P(u) = %P(exptY-u)lgo, Yen, (L),
is a bounded function on N,(L) (Theorem 3.15 of [4]);
(3.5) I (1+tn,wW)"P(u)du <

Ni(L)

for some n > 0 (Theorem 3.10 of [4]).
Let Y,,...,Y, be a basis of n,, and y,,...,y, coordinates on N, introduced
in (2.14).
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(3.6) LEMMA. There are C, y, ¢ > 0 such that for every z
P.(y) < Cmin(1, |y,|77,..., [y 7)1 +15,(2) ~*.
Proof. The lemma follows by (3.3), Lemma (1.10) and the inequality
max |y| < C(1+x,(0))

for some C, £ > 0 (cf, e.g., Proposition 1.10 of [4]).
The following lemma is immediately implied by (3.4).

(3.7) LEMMA. Let

. d
Y;f) = Ef(exl)“'}')’)hwa YEN;,.

Then there is C > 0 such that for every ze N, and j=1,...,x we have
I1Y; P || Lowry) < C.

Applying Lemma (3.7) in a similar way as in the proof of Lemma 4.9 of [4]
we obtain

(3.8) LEMMA. There are C, 6 > 0 such that for every ze N, and every y, ue N,
|P.(y)—P. () < Clly—ul(1+[y—ull+lyl)°,

X 1/2
Iyl = ( ) LV:IZ) :
i=1

Now we fix leftinvariant distances ty, Ty,, Ty, Tyy TNowy Ts» T4 ON the
corresponding groups. By Lemma (1.10) there are

Bis Bzs B3, Cy, €, C3 >0

where

such that
(3.9 tn, () < C,(1+74(y)* for yeN,,
(3.10) ty,(2) S Cy(1+1y,(zw))P*  for zeN,, weNy(L),

(3.11) (1 +1y,(2)(1 +Trey(W) < C3(1 + 1y, (zw)fP*  for zeN,, we Ny(L).

Let g be the density of g, with respect to a rightinvariant measure m on S.
Since N,, N are normal subgroups of S, we have

i = q(yxa)dydxda,

where dy, dx, da are Haar measures on N,, N, = N, N, (L), A4, respectively. Let
4'={,,...,A,} and E,,... E, be a basis of n, consisting of eigenvectors, i..,
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We can introduce an ordering of the set 4’ satisfying 4,+4; > 1; whenever
A+4;ed’ (see [4]) and assume that

A <...< 4,
If coordinates in N, are given By
x =exp(x, E,+ ... +x,E,),
then
(3.12) (ex)y = x; 4%+ T (X, o, Xiz 1y X1peees Xim1)

where T; are polynomials. Since either E;en, or E;eny(L), (3.12) implies that
the mapping

N, xNy(L)>(z, w)—=>zwe N,

is a diffeomorphism whose differential has determinant 1. Therefore, if dz and
dw are Haar measures on N, and N,(L), respectively, then dydzdwda is
a rightinvariant measure on S and

i = q(yzwa)dydzdwda.
(3.13) LEMMA. For every a > 0 there is C > 0 such that
(3.14) gq(yzwa) < C(1+1y,(») " *(1 +7x,(2)) *(1 + Tngw, (W) " *exp(—at,(a)).

Proof. Since N, is a normal subgroup in N, and N, a normal subgroup in
So, applying twice (1.12) we obtain

(3.15) ts5(yzwa) = C'(log(1 +ty, () +1og(1 + Ty, (zw)) + 7 ,(a)) - C”
for some constants C', C" > 0. Let B, be as in (3.11) and
o = max(a(C)~1, (@B3)(C)1).
By Proposition 1.21 of [4] there is C = C(«') > 0 such that
q(yzwa) < Cexp(—a' t5(yzwa)).
This combined with (3.15) and (3.10) yields (3.14).
(3.16) THEOREM. There are C, o, n > 0 such that for ae. zeN,

(3.17) Nj P,()(1+ 71y, ()'dy < C(1+14,(2) .

. Proof Let Y;,...,Y, be a basis of n, and Y, ,,,...,Y, a basis of n, such
that :

[H,Y]=4,HY, Hea.

We write

X $
Dy(a) = exp le Ai,aoga)), Dy(a) = exp( ) Ai,aoga)).

=x+1
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and D(a) = Dl(a)Dz(q). If

(3.18) P(s, u) = P(Iy, (s 'w))D(a™ 1),
then
(3.19) Pf(s)= | fu)P(s, u)du.
Ni(L)
Since Pe C*(S x N,(L)), (3.19), (2.6) and the Torelli theorem yield
(3.20) P(s, e) = £P(ss’, e)dji,(s').
By (3.5) and (1.11) there is ¢ > 0 such that
(3.21) ) IN (1+7x, ) (1 +15,(2) P(yz)dydz < o,

and so the function

R@ = [ (1+y,0)f POy

is finite for a.e. zeN,.
Let now P(s) = P(s, e). If ueN,(L), then P(u) = P(u~!). For
y < min(efz 2, efr s, defr )

we define

R'(s) = f,“ (1 +t~1(y))’P(ys)dy.

We shall show that, for almost all se S, R'(s) is finite. If s = uzwa, ue N,,zeN,,
we Ny(L), ae A, then by (1.3) (i) we have

R'(s) = | (1+74,0)) P(yuzwa)dy

N,

<(1 +tNl(u))”ﬁ[ (1 +7y,0)) P(yzwa)dy.

But, by (3.18),
P(yzwa) = P(a™'w™'z"ty tzwlly (w™'z"Y)a)D(a™?)
because N, is a normal subgroup. Therefore

R(<(1 +t~l(u))”1§ (1+ty,(zwaya w1z )y

x P(ya Iy, (w™'z"Y)a)dy-D,(a™ ).
Applying first (1.11), and then (1.6), we see that

(14+1y,(zwaya= w127 Y)) < C(1 + 1y, (aya™ 1)) (1 + 1, (2))" (1 + Typr, (W)™
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for a constant C > 0 and y, = yB,, where B, is as in (3.9). Now (1.8) implies that
(3.22) R'(s) < C(1+1y, ()" (1+ [Ad, Lo, [ (1 + 75, @)
X (1+TyoyW))* Dy(@a™ ) R(a™ Iy, (w™1z7 V)a),

which proves that R’(s) is finite for almost all seS. By (3.20) and the Fubini
theorem we have

(3.23) R() = [R(s5)dis(51)

We use (3.23) to prove that there are C, 6 > 0 such that

(3.249) R'(v) < C(1+15,(v)~°.

Let ve N, and & < %¢f;'. By (3.14); (3.22) and (3.23) for every a > 0 we have
R v)(1+15,)° = g (1+ty,(v)°R (vyzwa) q(yzwa)dydzdwda

< C(@) g(i + 23, (0P (14 T, 0y~ D) (14 14, (7)

X (14 1y, (02)) (1474, (2) (1 + Tagy (W) ~°
x Dy(@™ )1+ [|Ad, |, 1) exp(—at,(a))
XR(a™ My, (w™'z" v Ya)dydzdwda.
Let
Y(a) = Dy(a™ )1+ [|Ad], )" exp(—az ,(a)).
We have
1+, @F " < (L4174, 027 (L4 74, ()
and, by (3.9),
(T+zy,(yv™ ) < C(L+ 1y, @) (1 + 75,0

Hence
R0)(1+74,0) < Cf(1+1y,(0)* ™ (1 +1y,(02))° 2
5
X (1 + ‘tl\lz(z))‘,.'-rl —a(l -’-"'-No(l‘)(w))yl —a./,(a)
xR(@a™ Iy (w 'z v ) a)dydzdwda.
Let

v, @) = (1+14,0))* "*¥(a).

Since (1 +1y,(2))** 7' 7 < 1 for « sufficiently large, so integrating first over z we
obtain
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R (v)(1+ty, )
< f(1+1y,@) 2 R(a™ Ty, (w™ ' 2)a)(1 + Ty, W) ~*Y(y, a)dzdydwda
5 )

= [(1+1y,(ITy,W2)’* 2" R(a™ za)(1 + Ty, (W) ~*¥ (v, a)dzdydwda.
5

But, in view of (3.10),
. (M y,(W2)) < C(1+ 1y, (2)P2(1 + Tyory W2,
hence, by (1.8),
(325) R@(1+1y,0)
< Cf(1+ 1y, @) CT 2R (@)1 + Ty (W)Y F270¥ 71 72D, (a)
x (1+[|Ad |, [/2®* 2y (y, a)dzdydwda.

Since a—(1+|Ad,|, )" and a—(1+|Ad,], [If’***?" are submultiplicative
functions, by (1.5) and (1.7) we have

JA+1Ad, 1) (1 +Ad,],,[I*®* 7 exp(—at(a))da < oo

S

for a large enough. This together with (1.13) and (3.21) implies that for such
o the integral on the right-hand side of (3.25) is finite. Now, let

n < min(yfr’, 4087 7)
and let 6 be as in (3.24). Then
J (4w, 0 PO2)dy = [ (1475, (zyz™ ")) Plzy)dy

Ni N
< C([ (1414, Pzy~ Y)dy)(1 + 14, (2)1"
Ny
< CR(z7YH(1+ 15,2 < C(1 +14,(2)) %,
which completes the'proof.

(3.26) LeMMA. There are C, a, ¢ >0, ¢ <1, such that for almost all zeN,
(3.27) j' P,(»)'tdy < C(1 +1y,(2) 7%
N,

Proof. Let n be as in the previous theorem and y such that
C,= [(1+1y4,() dy < .
Ny

If e=n/(y+n) and 6 = ny/(y +n), then by the Holder theorem and Theorem
(3.16) we have
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1—¢ e
JP.O) Ty < ( 1 (P.oy (1 +en OV 0dy) (] (14w, 0) 7 dy)

< Ci(1+1y,(2) 1797,
where ¢ is as in (3.17).

Proof of Theorem (3.1). We rewrite for kernels P, the proof of
Proposition 5.1 of [14] applying (3.27). Let

Ei,={yeN,: P,(») >27™™} form=1,2,...

By Lemma (3.6) there are constants C,, C, > 0 such that for all ze N, the
coordinates |y,| (see (2.14)) of a point ye EZ are no larger than C,-2°*™, Hence
by Lemma (3.8) we can choose y > 0 such that for all zeN,

lye=y,ll >27™ /%

provided y, € E;, y, ¢ E7,+1. Now we divide N, into a lattice of cubes of side
27" defined in terms of the coordinates y,,...,y,, x =dimN,. Let Qf ;
j=1,....jm: be those cubes of this lattice which intersect EZ. Since
On.j< Ep.q, we have

Jmz < 2™ ER 4|
and, by (3.27),
Jmz < C-2"X(1 41y, (2)) %20 7O,
where a, ¢ and C are as in Lemma (3.26). Let
M if(x,) = sup | f(x,8,())dy;

hezl Qm,_!
then for a constant C, we have

Jm,z

M. flx,) < Cy ) 27™ Y M7 f(x)).
m=1 j=1
Sjogren has proved in [14] that

IME if Loy < CamP-27"2| fll Lony)s

where C, is a constant independent of z, m, j. Therefore
a0
IM fllLevy < Cs Z 27" m¥Pj, 2T ILfl Loevy)
m=1

< Co(1+74,@) 1l Loewsy»
which completes the proof.
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