FASC. 2

THE EXISTENCE OF $P(\alpha)$ -POINTS OF N^* FOR $\aleph_0 < \alpha < \mathfrak{c}$

 \mathbf{BY}

A. SZYMAŃSKI (KATOWICE)

In the presence of cardinals between \aleph_0 and $\mathfrak{c}=2^{\aleph_0}$ there arises a possibility to differentiate P-points of $N^* = \beta N \setminus N$ by calling a point of N^* a P(a)-point if it lies in the interior of the intersection of less than aits neighbourhoods; $P(\aleph_1)$ -points are nothing else but usual P-points, and since c is the greatest possible value for α , P(c)-points will be called absolute points of N^* . In paper [6], by Kucia and the author, it was shown that in ZFC+MA (Martin's Axiom) there exist 2^c absolute points of N^* . which extended an earlier result of Blass [1] on the existence of 2° P-points of N^* in ZFC+MA, as well as that of Rudin [9] that under CH (the Continuum Hypothesis, distinctions between P-points are unessential) there exist $2^{\mathfrak{c}}$ P-points of N^* . The problem arises whether for any α , $\aleph_0 < \alpha < \mathfrak{c}$, in ZFC+MA there exist P(a)-points of N^* which are neither absolute nor even $P(\alpha^+)$ -points. The main purpose of this paper is to give an affirmative answer to that problem in the only possible case of regular a, as the existence of P(a)-points which are not $P(a^+)$ -points implies the regularity of a. Solomon [10] obtained a partial result that there exist $P(\aleph_1)$ -points of N^* which are not $P(\aleph_2)$ -points. Our result is obtained under assertion (S), weaker than MA if added to ZFC, which says, roughly speaking, that there exist no (α, β) -gaps (in a broad sense defined below) for any α and β between \aleph_0 and ϵ . To get $P(\aleph_1)$ -points which are not $P(\aleph_2)$ points (as in the Solomon result) it is sufficient to assume the non-existence of (\aleph_0, \aleph_1) -gaps on N in the usual sense (cf. Rothberger [8]).

The existence of P-points of N^* which are not absolute, under MA ++ non-CH if absolute points exist, shows that the subspace of N^* consisting of P-points is not homogeneous, in contrast to the situation from Rudin's paper [9] where CH is assumed.

- 1. Preliminaries. The following assertion (S), due to Martin and Solovay [7], is a known consequence of Martin's Axiom.
- (S) If R and P are families of non-empty closed-open subsets of N^* such that $\operatorname{card}(R \cup P) < c$ and if for each $A_1, \ldots, A_k \in R$, $k \in N$ (N is the

set of positive integers), and for each $B \in P$, there is

$$B \setminus (A_1 \cup \ldots \cup A_k) \neq \emptyset$$
,

then there exists a closed-open subset C of N^* such that $C \cap A = \emptyset$ for each $A \in R$ and $C \cap B \neq \emptyset$ for each $B \in P$.

By a gap in a broad sense we mean the non-existence of a closed-open set C as in (S).

Assertion (S) is analogous to assertion Q of the non-existence of (\aleph_0, α) -gaps on N for $\alpha < \mathfrak{c}$. The analogy fails if we substitute higher ordinals for \aleph_0 . Namely, Hausdorff has shown [4], using merely the axiom of choice, that there exist (\aleph_1, \aleph_1) -gaps on N. Assertion Q was investigated by Rothberger [8] who proved that Q follows from an assertion, known presently as $P(\mathfrak{c})$, that each non-empty intersection of less than \mathfrak{c} closed-open subsets of N^* has a non-empty interior; $P(\mathfrak{c})$ is a consequence of (S) (Booth [2]).

2. Some properties of towers. A tower is a transfinite sequence $\{T_{\beta}\colon \beta<\alpha\}$ of closed-open subsets of N^* such that $T_0=N^*$, and $\gamma<\beta$ implies $T_{\beta}\subsetneq T_{\gamma}$ (the terminology is taken from [3]). The symbol T will be used both for a tower and for the intersection of its members; the symbol $\mathrm{Bd}T$ will be used for the boundary of tower T, i.e. $\mathrm{Bd}T=T\setminus\mathrm{Int}T$. We assume that cardinals are initial ordinals (ordinals are usually denoted by small Greek letters). The layers of tower $T=\{T_{\beta}\colon \beta<\alpha\}$ are the sets

$$V_{\beta+1} = T_{\beta} \setminus T_{\beta+1} \quad \text{ or } \quad V_{\beta} = \operatorname{Int} \bigcap \{T_{\gamma} \colon \gamma < \beta\} \setminus T_{\beta}$$

if β is a limit ordinal. The layers are open and disjoint. Moreover, the family of all layers of a tower T covers densely $N^* \setminus T$.

LEMMA 1 (P(c)). Let a be a regular cardinal. Let $T = \{T_{\beta} : \beta < \alpha\}$ be a tower and let \mathcal{G} be a family of closed-open subsets of N^* such that $\operatorname{Bd} T \cap \bigcap \mathcal{G} \neq \emptyset$ and $\operatorname{card} \mathcal{G} < \alpha$. Then the set of all $\xi, \xi < \alpha$, for which the layer V_{ξ} intersects $\operatorname{Int} \bigcap \mathcal{G}$ is cofinal with α .

Proof. Let β , $\beta < \alpha$, be fixed. Without loss of generality we may assume that \mathcal{S} is closed under finite intersections. For any given A from \mathcal{S} there exists a ξ_A , $\xi_A < \alpha$, such that

$$(T_{\beta} \diagdown T_{\xi_{A}}) \cap A \neq \emptyset$$

(for if $(T_{\beta} \setminus T_{\xi}) \cap A = \emptyset$ for each $\xi < a$, then $(T_{\beta} \setminus T) \cap A = \emptyset$, whence $T_{\beta} \cap A \subset T$, a contradiction with $\operatorname{Bd} T \cap \bigcap \mathscr{S} \neq \emptyset$). Since $\operatorname{card} \mathscr{S} < a$ and a is regular, there exists a $\xi, \xi < a$, such that $\xi_A < \xi$ for each $A \in \mathscr{S}$. For that ξ the sets $A \cap (T_{\beta} \setminus T_{\xi})$ are non-empty and form a centered family of closed-open subsets of $T_{\beta} \setminus T_{\xi}$. By $P(\mathfrak{c})$, their intersection contains a non-empty open set W. In particular, $W \subset \operatorname{Int} \bigcap \mathscr{S}$. The family of all layers of T covers densely $N^* \setminus T$ and W is disjoint with T. Thus W meets

a layer V_{ν} of T. We have

$$V_{\gamma} \cap \operatorname{Int} \bigcap \mathscr{S} \neq \emptyset$$
.

It remains to prove that $\gamma \geqslant \beta$. In fact, $W \subset T_{\beta} \setminus T_{\xi}$, whence $V_{\gamma} \subset T_{\beta} \setminus T_{\xi}$ and thus $\gamma \geqslant \beta$.

LEMMA 2 (S). Let α be a regular cardinal. Let $T = \{T_{\beta} : \beta < \alpha\}$ be a tower and let $\mathscr S$ be a family of closed-open subsets of N^* such that $\operatorname{card}\mathscr S$ $< \alpha < \mathfrak c$. If $\bigcap \mathscr S$ intersects $\operatorname{Bd} T$, then $\operatorname{Int} \bigcap \mathscr S$ intersects $\operatorname{Bd} T$.

Proof. Let B be the set of all ξ for which the layer V_{ξ} of T intersects Int $\bigcap \mathcal{S}$. For each $\xi \in B$ take a non-empty closed-open set W_{ξ} such that

$$W_{\varepsilon} \subset V_{\varepsilon} \cap \operatorname{Int} \cap \mathscr{G}$$
.

By Lemma 1, the set B is cofinal with a and, therefore, $clW \cap BdT \neq \emptyset$ for an arbitrary $W \subset N^*$ such that $W \cap W_{\xi} \neq \emptyset$ for each $\xi \in B$. Applying (S) to families $\{N^* \setminus A : A \in \mathcal{S}\}$ and $\{W_{\xi} : \xi \in B\}$, we get a closed-open subset G of N^* such that $G \cap (N^* \setminus A) = \emptyset$ for $A \in \mathcal{S}$ and $G \cap W_{\xi} \neq \emptyset$, $\xi \in B$. Hence

$$G \subset \bigcap \mathscr{S}$$
 and $G \cap \operatorname{Bd} T \neq \emptyset$.

Thus $Int \cap \mathscr{S}$ intersects BdT.

LEMMA 3 (S). Let α be a regular cardinal. Let $T = \{T_{\beta} : \beta < \alpha\}$ be a tower and let $\mathscr S$ be a family of closed-open subsets of N^* such that $\operatorname{card} \mathscr S < \alpha < \mathfrak c$. Let $\mathscr R$ be a family of closed-open subsets of N^* such that $\operatorname{card} \mathscr R < \mathfrak c$. If $\bigcap \mathscr S$ intersects $\operatorname{Bd} T \cap \bigcap \mathscr R$, then $\operatorname{Int} \bigcap \mathscr S$ intersects $\operatorname{Bd} T \cap \bigcap \mathscr R$.

Proof. Without loss of generality we may assume that the family \mathcal{R} is closed under finite intersections. Now, in virtue of Lemma 2, for each $R \in \mathcal{R}$ we have

$$\operatorname{Bd} T \cap R \cap \operatorname{Int} \bigcap \mathscr{S} \neq \emptyset$$
.

Hence for each $R \in \mathcal{R}$ there exists a closed-open subset W_R of N^* such that

$$W_R \subset R \cap \operatorname{Int} \bigcap \mathscr{S} \quad \text{ and } \quad W_R \cap \operatorname{Bd} T \neq \emptyset.$$

For $R \in \mathcal{R}$, denote by Q_R the family consisting of all non-empty sets $W_R \cap (T_{\gamma} \setminus T_{\beta})$, where γ and β run over all ordinals less than α . Clearly, each Q_R consists of at most α closed-open subsets of N^* and, therefore, the family

$$Q = \bigcup \{Q_R \colon R \in \mathcal{R}\}$$

has the cardinality not greater than $a \cdot \operatorname{card} \mathcal{R} < \mathfrak{c}$. Now, applying (S) to families $\{N^* \setminus A : A \in \mathcal{S}\}$ and Q, we get a closed-open subset G of N^* such that $G \cap (N^* \setminus A) = \emptyset$ for $A \in \mathcal{S}$ and $G \cap P \neq \emptyset$, $P \in Q$. Since $G \subset \operatorname{Int} \cap \mathcal{S}$, it suffices to show, in order to prove that $\operatorname{Int} \cap \mathcal{S}$ intersects $\operatorname{Bd} T \cap \bigcap \mathcal{R}$, that G intersects $\operatorname{Bd} T \cap \bigcap \mathcal{R}$. For this purpose, in virtue of

the compactness of N^* , it suffices to show that the family

$$\{\operatorname{Bd} T \cap G \cap R \colon R \in \mathcal{R}\}\$$

is centered. But to prove that, it suffices only to show that

$$BdT \cap G \cap R \neq \emptyset \quad \text{for } R \in \mathcal{R},$$

since \mathcal{R} is closed under finite intersections. To do this it suffices to show that $\mathrm{Bd}T \cap G \cap W_R \neq \emptyset$, since $W_R \subset R$ for $R \in \mathcal{R}$. For this purpose assume, on the contrary, that $\mathrm{Bd}T \cap G \cap W_R = \emptyset$ for some $R \in \mathcal{R}$. By the compactness of N^* , there exists an ordinal γ , $\gamma < a$, such that

$$(T_{\nu} \setminus \operatorname{Int} T) \cap G \cap W_{R} = \emptyset.$$

However, since $W_R \cap \operatorname{Bd} T \neq \emptyset$, there exists an ordinal $\beta, \beta < a$, such that $(T_{\gamma} \setminus T_{\beta}) \cap W_R \neq \emptyset$. Hence $(T_{\gamma} \setminus T_{\beta}) \cap W_R \in Q$ and, therefore,

$$(T_{\nu} \setminus T_{\beta}) \cap W_R \cap G \neq \emptyset$$

a contradiction, since $T_{\gamma} \setminus T_{\beta} \subset T_{\gamma} \setminus \text{Int } T$.

3. Existence theorems.

LEMMA 4 ((Pc)). If a is a regular cardinal such that $\aleph_0 \leqslant a \leqslant c$, then there exists a tower $\{T_{\beta}: \beta < a\}$.

A simple proof is omitted.

THEOREM (S). If α is a regular cardinal such that $\aleph_0 < \alpha < \mathfrak{c}$, then there exists a $P(\alpha)$ -point of N^* which is not a $P(\alpha^+)$ -point.

Proof. Since (S) implies $2^{\gamma} = \mathfrak{c}$ for $\gamma < \mathfrak{c}$ (Booth [3]) all families consisting of less than a closed-open subsets of N^* can be well ordered in the type \mathfrak{c} . Let $\{\hat{\mathscr{S}}_{\gamma} \colon \gamma < \mathfrak{c}\}$ be a well ordering of those families. Let $T = \{T_{\beta} \colon \beta < a\}$ be a tower whose existence follows from Lemma 4. Now, for each $\gamma, \gamma < \mathfrak{c}$, we define a closed-open subset U_{γ} of N^* such that

- 1. if $U_{\gamma} \cap \bigcap \mathscr{S}_{\gamma} \neq \emptyset$, then $U_{\gamma} \subset \operatorname{Int} \bigcap \mathscr{S}_{\gamma}$;
- 2. $\{U_{\gamma} \cap \operatorname{Bd} T \colon \gamma \leqslant \beta\}$ is a centered family for each $\beta, \beta < \mathfrak{c}$.

In order to define U_0 consider the intersection of $\operatorname{Bd} T$ with $\bigcap \mathscr{S}_0$. If the intersection is empty, then we put a closed-open subset U_0 of N^* , disjoint with $\bigcap \mathscr{S}_0$, such that $U_0 \cap \operatorname{Bd} T \neq \emptyset$. If the intersection is not empty, then, by Lemma 2,

$$\operatorname{Int} \bigcap \mathscr{S}_0 \cap \operatorname{Bd} T \neq \emptyset$$

and, therefore, there exists a closed-open subset W of N^* such that

$$W \subset \operatorname{Int} \bigcap \mathscr{S}_0 \quad \text{and} \quad W \cap \operatorname{Bd} T \neq \emptyset.$$

Thus we put $U_0 = W$.

Suppose that we have defined U_{γ} for $\gamma < \beta$, where $\beta < \mathfrak{c}$. By condition 2, the family $\{U_{\gamma} \cap \operatorname{Bd} T \colon \gamma < \beta\}$ is centered and consists of closed subsets of N^* . By the compactness of N^* ,

$$K_{\beta} = \operatorname{Bd} T \cap \bigcap \{U_{\gamma}: \ \gamma < \beta\} \neq \emptyset.$$

In order to define U_{β} consider the intersection of K_{β} with $\bigcap \mathscr{S}_{\beta}$. If the intersection is empty, then we put U_{β} to be an arbitrary closed-open subset of N^* which is disjoint with $\bigcap \mathscr{S}_{\beta}$ and which intersects K_{β} . If the intersection is not empty, then, by Lemma 3,

$$K_{\beta} \cap \operatorname{Int} \bigcap \mathscr{S}_{\beta} \neq \emptyset$$

and, therefore, there exists a closed-open subset W of N^* such that

$$W \subset \operatorname{Int} \bigcap \mathscr{S}_{\beta}$$
 and $W \cap K_{\beta} \neq \emptyset$.

Then we put $U_{\beta} = W$.

It is clear that, in both cases, U_{β} satisfies, with defined previously U_{β} , $\gamma < \beta$, both conditions 1 and 2.

Now, by condition 2, the set $\operatorname{Bd} T \cap \bigcap \{U_{\gamma} \colon \gamma < \mathfrak{c}\}$ is not empty. We show that it consists of P(a)-points which are not $P(a^+)$ -points. Let p be one of them. Since p lies in the boundary of tower T, p is not a $P(a^+)$ -point. In order to show that p is a P(a)-point, let \mathscr{R} be a family of less than a neighbourhoods of p. There exists \mathscr{S}_{β} with $\beta < \mathfrak{c}$ such that $\bigcap \mathscr{S}_{\beta} \subset \bigcap \mathscr{R}$ and $p \in \bigcap \mathscr{S}_{\beta}$. Since

$$p \in \operatorname{Bd} T \cap \bigcap \{U_{\gamma} \colon \gamma < \mathfrak{c}\},\$$

 $p \in U_{\beta}$ and, therefore, $U_{\beta} \cap \bigcap \mathscr{S}_{\beta} \neq \emptyset$. Thus, by condition 1, $U_{\beta} \subset \operatorname{Int} \bigcap \mathscr{S}_{\beta}$. Hence U_{β} is a required neighbourhood of p contained in $\bigcap \mathscr{R}$.

REFERENCES

- [1] A. Blass, The Rudin-Keisler ordering of P-points, Transactions of the American Mathematical Society 197 (1973), p. 145-166.
- [2] D. Booth, Ultrafilters on a countable set, Annals of Mathematical Logic 2 (1970-1971), p. 1-24.
- [3] A Boolean view of sequential compactness, Fundamenta Mathematicae 85 (1974), p. 99-102.
- [4] F. Hausdorff, Summen von & Mengen, ibidem 26 (1936), p. 241-255.
- [5] S. Hechler, Short complete nested sequences of $\beta N N$ and small maximal almost disjoint families, General Topology and its Applications 2 (1972), p. 139-149.
- [6] A. Kucia and A. Szymański, Absolute points in β N N, Czechoslovak Mathematical Journal 26 (101) (1976), p. 381-387.
- [7] D. Martin and R. Solovay, Internal Cohen extensions, Annals of Mathematical Logic 2 (1970), p. 143-178.

- [8] F. Rothberger, On some problems of Hausdorff and Sierpiński, Fundamenta Mathematicae 35 (1948), p. 29-46.
- [9] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Mathematical Journal 23 (1956), p. 409-419.
- [10] R. Solomon, Families of sets and functions, preprint.

SILESIAN UNIVERSITY, KATOWICE

Reçu par la Rédaction le 18. 7. 1975