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THE EXISTENCE OF P(a)-POINTS OF N* FOR %, < a< ¢

BY

A. SZYMANSKI (KATOWICE)

In the presence of cardinals between 8, and ¢ = 2% there arises
a possibility to differentiate P-points of N* = SN\ N by calling a point
of N* a P(a)-point if it lies in the interior of the intersection of less than a
its meighbourhoods; P(¥,)-points are nothing else but usual P-points,
and since ¢ is the greatest possible value for a, P(c)-points will be called
absolute points of N*. In paper [6], by Kucia and the author, it was shown
that in ZFC +MA (Martin’s Axiom) there exist 2° absolute points of N¥,
which extended an earlier result of Blass [1] on the existence of 2° P-points
of N* in ZFC +MA, as wel as that of Rudin [9] that under CH (the Con-
tinuum Hypothesis, distinctions between P-points are unessential) there
exist 2° P-points of N*. The problem arises whether for any a, 8, < a < ¢,
in ZFC +MA there exist P(a)-points of N* which are neither absolute nor
even P(a*)-points. The main purpose of this paper is to give an affir-
mative answer to that problem in the only possible case of regular aq,
as the existence of P(a)-points which are not P(a%)-points implies the
regularity of a. Solomon [10] obtained a partial result that there exist
P(R,)-points of N* which are not P(X,)-points. Our result is obtained
under assertion (S), weaker than MA if added to ZFC, which says, roughly
speaking, that there exist no (a, #)-gaps (in a broad sense defined below)
for any a and g between ¥, and ¢. To get P(¥X,)-points which are not P (X,)-
points (as in the Solomon result) it is sufficient to assume the non-exist-
ence of (N,, 8;)-gaps on N in the usual sense (cf. Rothberger [8]).

The existence of P-points of N* which are not absolute, under MA +
-+ non-CH if absolute points exist, shows that the subspace of N* consisting
of P-points is not homogeneous, in contrast to the situation from Rudin’s
paper [9] where CH is assumed.

1. Preliminaries. The following assertion (S), due to Martin and
Solovay [7], is a known consequence of Martin’s Axiom.

(8) If R and P are families of mon-empty olosed-open subsets of N*
such that card (RUP) << ¢ and if for each A,,...,A, e R, ke N (N ts the
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set of positive integers), and for each B € P, there is
B\ (4,v ... UA,) #0,

then there exists a closed-open subset C of N* such that CAnA = @ for each
AeR and CnB # @ for each B e P.

By a gap in a broad sense we mean the non-existence of a closed-
open set C as in (S).

Assgertion (S) is analogous to assertion Q of the non-existence of
(Roy a)-gaps on N for a< ¢. The analogy fails if we substitute higher
ordinals for §,. Namely, Hausdorff has shown [4], using merely the axiom
of choice, that there exist (X,, X,)-gaps on N. Assertion Q was investigated
by Rothberger [8] who proved that Q follows from an assertion, known
presently as P(c), that each non-empty intersection of less than ¢ closed-
open subsets of N* has a non-empty interior; P(c) is 2 consequence of (S)
(Booth [2]). :

2. Some properties of towers. A tower is a transfinite sequence
{Ts: B< a} of closed-open subsets of N* such that T, = N*, and y < B
implies T; & T, (the terminology is taken from [3]). The symbol 7' will
be used both for a tower and for the intersection of its members; the
symbol BAT will be used for the boundary of tower T, i.e. BAT = T\IntT.
We assume that cardinals are initial ordinals (ordinals are usually denoted
by small Greek letters). The layers of tower T = {T;: f < a} are the sets

Vﬁ+1 == Tﬂ\Tﬁ+l or Vﬂ = Int m {T.y: y < ﬂ}\Tﬂ

if § is a limit ordinal. The layers are open and disjoint. Moreover, the family
of all layers of a tower T covers densely N*\T.

LEMMA 1 (P(c)). Let a be a regular cardinal. Let T = {Tp: g < a}
be a tower and let & be a family of closed-open subsets of N* such that
BATnN& # O and card¥ < a. Then the set of all &, £ < a, for which
the layer V. intersects Int() & is cofinal with a.

Proof. Let B, 8< a, be fixed. Without loss of generality we may
assume that & is closed under finite intersections. For any given 4 from &
there exists a &4, £, < a, such that

(for if (Tp\T;)nA =©O for each &< a, then (Ty\T)nA = O, whence
TenA =T, a contradiction with BATn( ¥ # ). Since card¥ < a
and a is regular, there exists a &, £ < a, such that &, < £ for each 4 € .
For that & the sets A n(T,\T,) are non-empty and form a centered family
of closed-open subsets of T,\T,. By P(c), their intersection contains
a non-empty open set W. In particular, W < Int (M) <. The family of all
layers of T covers densely N*\T and W is disjoint with 7. Thus W meets
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a layer V, of T. We have
V,nInt N& #0.

It remains to prove that y > g. In fact, W < T',\T,, whence V,
c T',\T, and thus y > p.

LEMMA 2 (S). Let a be a regular cardinal. Let T = {T): f< a}
be a tower and let & be a family of closed-open subsets of N* such that card &
< a< ¢ If N intersects BAT, then Int () & intersecte BAT.

Proof. Let B be the set of all £ for which the layer V, of T intersects
Int() <. For each ¢ € B take a non-empty closed-open set W, such that

W, c V.nInt) &.

" By Lemma 1, the set B is cofinal with a and, therefore, clW nBdT +# O
for an arbitrary W < N* such that WnW, # @ for each & € B. Applying
(8) to families {N*\A: 4 e} and {W,: £ € B}, we get a closed-open
subset @ of N* such that GN(N*\A) =@ for 4 e¢¥ and GnW, # @,
& € B. Hence

Gc (¥ and GnABAT #@.

Thus Int( )< intersects Bd7.

LEMMA 3 (S). Let a be a regular cardinal. Let T = {T;: B < a}
be a tower and let & be a family of closed-open subsets of N* such that cards
< a < ¢. Let # be a family of closed-open subsets of N* such that card Z < c.
If M & intersects BAT n(\ &, then Int( & intersects BAT () &.

Proof. Without loss of generality we may assume that the family £
is closed under finite intersections. Now, in virtue of Lemma 2, for each
Re#Z we have

BATnRAInt( & # 0.

Hence for each R e # there exists a closed-open subset Wy of N*
such that

Wr e RnInt(\¥ and WgzrnBdT #0.

For R € #, denote by @ the family consisting of all non-empty sets
Wrn(T,\T;), where y and § run over all ordinals less than a. Clearly,
each Q. consists of at most a closed-open subsets of N* and, therefore,
the family

Q@ = U {Qr: Rec %}

has the cardinality not greater than a-card # < ¢. Now, applying (S)
to families {N*\A4: 4 € ¥} and Q, we gei a closed:open subset G of N*
such that GNn(N*\A4) =@ for A% and GnP %@, PcQ. Since @
< Int(M) &, it suffices to show, in order to prove that Int( ¥ intersects
BATn (M) %, that @ intersects BdTn () #. For this purpose, in virtue of
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the compactness of N*, it suffices to show that the family
{BATnGNR: R € X}
is centered. But to prove that, it suffices only to show that
BdTAGNR 0 for Re X,

since # is closed under finite intersections. To do this it suffices to show
that BATNGnW5 @, since W, < R for R € #. For this purpose assume,
on the contrary, that BATnGnW; = O for some R € #. By the compact-
ness of N*, there exists an ordinal y, y < a, such that

(T NIt T) NG AW, = @.

However, since WynBdT # O, there exists an ordinal g, < a,
such that (T \T;)nWg #@. Hence (T \T;)nWge@ and, therefore,

(T\Tg)nWrn@ #9,
a contradiction, since T' \T; <« T \IntT.

3. Existence theorems.

LeEMMA 4 ((Pc)). If a is a regular cardinal such that R, < a< ¢,
then there exists a tower {Tp: B << a}.

A simple proof is omitted.

THEOREM (S). If a 18 a regular cardinal such that R, < a < ¢, then
there exists a P (a)-point of N* which is not a P (a*)-point.

Proof. Since (S) implies 2” = ¢ for y < ¢ (Booth [3]) all families
consisting of less than a closed-open subsets of N* can be well ordered
in the type ¢. Let {.5/3,,: y < ¢} be a well ordering of those families. Let
T = {T'y: B< a} be a tower whose existence follows from Lemma 4. Now,
for each y, y < ¢, we define a closed-open subset U, of N* such that

1. # UnN&, #0, then U, «c Int(" &,;
2. {U,nBAT: y < B} is a centered family for each g, f < «.

In order to define U, consider the intersection. of BdT with () &,.
If the intersection is empty, then we put a closed-open subset U, of N*,
disjoint with (1) %,, such that UynBdT # @. If the intersection is not
empty, then, by Lemma 2,

Int FenBAT # 0
and, therefore, there exists a closed-open subset W of N* such that
Weclnt( ¥ and WnBAT #0.
Thus we put U, = W.
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Suppose that we have defined U, for y < §, where g < ¢. By condi-
“tion 2, the family {U,nBAT: y < B} is centered and consists of closed
subsets of N*. By the compactness of N*,

K, =BdTnN{U,: y< B} #9.

In order to define U, consider the intersection of K, with (M&;. If
the intersection is empty, then we put U, to be an arbitrary closed-open
subset of N* which is disjoint with (M) &, and which intersects K. If the
intersection is not empty, then, by Lemma 3,

and, therefore, there exists a closed-open subset W of N* such that

Then we put Uy, = W.

It is clear that, in both cases, U, satisfies, with defined previously
U, vy < B, both conditions 1 and 2.

Now, by condition 2, the set BATn({U,: y < ¢} is not empty.
We show that it consists of P (a)-points which are not P(a™)-points. Let p
be one of them. Since p lies in the boundary of tower 7, p is not a
P(a*)-point. In order to show that p is a P(a)-point, let # be a family
of less than a neighbourhoods of p. There exists &, with < ¢ such
that (¥ = (N Z and pe() F,. Since

peBATnN{U,: vy <},

peU; and, therefore, Uyn()¥; # @. Thus, by condition 1, U, c
Int (M) &;. Hence U, is a required neighbourhood of p contained in (.
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