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Let T be the circle group R/Z and, for 1 < p < oo, let L? be the usual
Lebesgue space formed with respect to normalized Lebesgue measure m
on T. It is well known that every complex Borel measure x4 on T' acts
as a convolution operator on any L?”-space: uxL? < L”. More interesting
is the fact that there are probability measures 4 on 7 which are singular
with respect to m and yet have the property that u+L? < L*** for some ¢
= g(p) > 0 and all p € (1, o). For examples of such u obtained using
Riesz products see p. 393 in [1]. For another example and a discussion
of this phenomenon see p. 120-122 in [2]. The purpose of this note* is to
prove the following

THEOREM. Let A be the Cantor-Lebesgue measure on T'. For each p € (1, oo)
there is an & > 0 such that ||Axfll ,,.<Ifll p for all f e L>.

This theorem is a consequence of the following two lemmas:

LEMMA 1. Suppose the inequality

1[{a+b\" [b+c\? [a+e\T\? [aP+bP 4o \!P

o Gl T <)
holds for all positive numbers a, b, c. Then |Axfll o< Ifl,, for all fe L*.

LemmA 2. Inequality (1) is valid for ¢ =2 and p = 2/(1+37?)~
~ 1.2679.

For 2/(1+37'2) < p < 2, the Theorem is a direct consequence of the
lemmas. For other values of p < 2, our result follows from the Riesz-
Thorin theorem and the fact that Axfl , < Ifl, (f € L'). Duality and

another application of complex interpolation take care of the case 2 < p
< oo. Thus it is enough to prove the lemmas.

* Partially supported by NSF Grant MCS-7827602.
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Proof of Lemma 1. For N =1, 2, ..., let Gy be the cyclic group of
3" elements realized as the set {0,1,...,3"Y —1} with addition modulo
3Y, and let L?(Gy) be the Lebesgue space formed with respect to normal-
ized counting measure on (5. The norm in L?(G,) will be denoted by
Ill,,~- Let uy be the probability measure uniformly distributed over

the set
N-1

Sy =1{D &3 ¢ =0,2}.

=0

We will show that if (1) holds for »p and ¢, then

(2) ”l‘N*fle,Nguf" WN 9 fELp(GN)’-N=1’21--'-

If we take the interval [0, 1) as a model for 7, then the Cantor-
Lebesgue meagsure A is the limit (in an appropriate sense) of the sequence
of measures {Ay}%.,, where 1y is the probability measure uniformly
distributed over the set

N-1

{3 &3N: 4 =0,2].

i=0

Thus the conclusion of Lemma 1 will follow from (2) and an elementary
limit argument. We will establish (2) by induection on N.

For N = 1, inequality (2) is a direct consequence of (1). So suppose
that (2) is valid with N replaced by N —1 and let f be a function on G.

For j =0,1,2, let B; = {neGy: n =j (mod 3)} and let

_[f(n) if n ek,
Tyt = {0 if n ¢ B,
For j = 0, 2, let u% be the probability measure uniformly distributed
over SynB;. Thus uy = (u + #%)/2. Now

(3)  lun*fllg,~
BE v *fo (1) + piy f1(n) \? ux #f1(n) + pk #fa(n) \?
e Pl G e R e e i
nekE, nek,
p *fa(n) + p3; xfo(n) \7]) 1
P s |
neky
_f1 fo+fi ||° fotfa |?
) _{-é-[ i 2 a.N-1 +”#N-l*' 2 a,N-1
Z . F e 1/q
+ “ Bn_1% J: _l2_f° q.M_l]} ’
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where fj, ;’, are functions on G, _, such that
(4) W -2 = i1 = BIfEN -

By way of example, we elaborate on the equality

= Z( l‘N*fl('”)'I‘FN*fz('”)) 1 “.“N— f1+f2

2 3 2

N-1
nek 1 o

Since E, = B,+1 and u%(j) = uy(j—2), the LHS of the above is

1 3 ( p*fa(m+1) + py fa(n—1) )«
- 2 .

2
‘nEEo,

Putting f,(n) = f,(n+1) and f,(n) = fo(n—1), we obtain

- 2( f1+f2( ))

nek

where fl and fz are supported on E,. Now, identifying E, with G, _, and
uy with uy_,, we get

1 “ fitfe |
= || BN 1%

2 q,N—1

By (2) (with N —1 instead of N) and the triangle inequality, the last
term of (3) is not greater than

{ % [ ufou,,N_lzufﬂl,,N_l ) +( ufﬂlp,N_lJ;llleb,N-l)“ s

i

+( Wl -1 ; ollp. -1 )‘]}"" { [31folZ 3 IFul2 w +3 ILfellZ N]}l

= fllp, v

Here the inequality is a consequence of (1) and (4). Thus (2) is es-
tablished and the lemma is proved. :

Proof of Lemma 2. To study inequality (1) is essentially to examine
the maxima of the quantity (a+ )2+ (b+¢)?+(a+c¢)? subject to the
constraint a® +b”+¢® = 1. When.q = 2, . the method of Lagrange shows
that if such a maximum occurs for a trlpla (a, b, ¢), then there is a constant
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A < 0 such that
a+ia?! = b+ 2?7 =c+Ac®.

Since an equation -+ Az®~! = const (A < 0,1 < p < 2) can have at
most two solutions # > 0, at least two of the values a, b, ¢ are equal. Thus,
setting @ = b = ¢ and ¢ = 1, it suffices to show that for p > 2/(1437'7%),
the maximum of

[(2t) +2(1 + ']
(2t? +1)l/p

@) =

for 1> 0 occurs when ¢ = 1.

Now f’(t) has the same sign as s(t) = —2¢* +3¢t—2t*~' +1. Since
8''(t) <0 for t > (2—p)/p and since s8'(1) = 5 —4p, it follows that, for
p > 5/4, f(t) is decreasing for t>1. A computation shows that f(0)
<fQ) if

~ 1.2263.

Thus, for p > 5/4, it follows that if f(t) > f(1) for any ¢t > 0, then
there exists #, with 0 <?, <1 and 8({) =0, or

1+,

Let y,(t) = 2t*' and 9,(t) =14+2t/(1+1t). If B5/4 <py <2, it is
easy to see that there exists f, € (0, 1) and £ > 0 such that, for {, <t <1
and p,<p <2 we have y(t)—y,(t) > ¢, 50 y,(t)—¥,(t) > (1—t)e > 0.
Let 8 be the set of all p € [1.2561, 2] for which there exists ¢, € [0, 1)
such that (5) holds. It follows from the preceding remark that 8§ is closed.
Let p, be the greatest element of S. Then p, < 2. (If § =@, the lemma
is proved.) We will show that

(6) Py < 2[(1+3712),

(5) 207 =1+

which will complete the proof of the lemma.

For p = p,, let ¢, = sup{t € [0,1): ,(t) = ya(1)}. Since y,(1) < Ya(?)
for t <1 and |1—¢| small, we have ¢, <1. It then follows that y;(¢,)
= ¥,(t), and so

2t,

2(p,—1)tP17! = .
(P —1)Y L+t

Since also
9,

27171 = y,(8) = ya(ty) = 1+ 1_‘_‘1
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we have
2t,
=14 — -1
P + 144t 4322
But the function
() = 14—
I = T I s

satisfies g(t) < 2/(L+37"%) for 0 <t< 1. This establishes (6) and com-
pletes the proof of the lemma.

It would be interesting to determine the precise range of values p
and ¢ for which A»L* c L? (P 1267) and also to determine the range of
values for which inequality (1) holds (P 1268). The only additional infor-
mation we have concerning these problems is the following: if AxL?

c L9, then
1 log2
- —_ L
P ( log3 )( ) 1
(Thus if A« L? = I?, then p > 2(1+log2/log3)~! ~ 1.2263.)

Added in proof. W. Beckner has shown that (1) holds with ¢ = 2
precisely when p > log4/log3 ~ 1.2619.
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