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- Kuratowski [3] (see also [4], p. 48-49) has shown that at most 14
distinet sets can be constructed from a subset 4 of a topological space X
by successive applications in any order of the closure operation and the
complementation operation. Let us call sets thus constructed relatives of
A. In a recent paper of Herda and Metzler [2], they proved that there
exists a subset A in a topological space of any cardinal > 7 from which
exactly 14 relatives can be found. However, these 14 relatives cannot be
co-existed in any space with less than 7 points.

The main result of the present paper is: If A is a subset of an n-point
space with n < 7, then 4 has at most 2n relatives. For each n, the number
of non-homeomorphic topologies under which the above construction is
possible are also given in this paper. Moreover, as we know, not all sub-
sets of X would give rise to 2n relatives on itself (n < 7) no matter how
good the topologies we have in hand. The set which has exactly 2n rela-
tives will be called a K,-set. Furthermore we shall show that our results
hold only partially if the topological closure is replaced by a more gene-
ralized closure, namely the algebraic closure in abstract algebras.

Throughout this paper, we use C to denote the closure of the set
C; C' the complement of C. The number of elements of C is denoted by |C]
and its interior is denoted by int (C).

Now let 4, be a subset of the topological space X. We then denote
A, =A4,; 4, =A,,..., and A, = B,; A, = B,;... and so on. Under
such construction we get distinct sets 4,,..., 4; and B,, ..., B,,. They
are the so called relatives of A,. According to Kuratowski [3], I< T,
m < 7. Since each 4, is followed by the complement A4, ., = Ay, | must
be odd. Similarly m is odd.

1. Finite topological spaces. We shall study, in this section, the
Kuratowski problem in the topological spaces with cardinal < 7. We
are going to prove the following
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THEOREM 1. Let X be a topological space and A, be a subset of X. If
exactly 2n (n < 7) distinct sets can be constructed from A, by successive appli-
cations, in any order, of closure and complementation, then the number of
elements of X cannot be less than n.

In order to prove this theorem, we start with some lemmas.

LeMMA 1. If 1 = 17, then |4,] = 3.

Proof. Under our construction 4, =A4,, 4, =A;7 ", A, =A;7"~"".
So clearly 4, is an open set contained in 4,, and A, is the interior of 4,.
Then we have A, >. A, > A,. Hence [4,| > 3.

LeEMMA 2. If 1 > 5, m > 5, then |As N B;| > 2, |45] > 3 and |B;| > 3.

Proof. Observe that A, — int(4,) > int(4,) = B;,s0 A, > B, = B,.
Claim that A, N" B, #@. For if A, n B, =@, then A, < B; = B, and
so A, = A< B,. Hence A, = B, which is a contradiction. Hence, by
lemma 2 in [2], |4 N Bs] # 1, therefore |A; N By| > 2. As A contains
a non-void set B, which does not intersect B;. So |4;| > 3. By symmetry,
|B| > 3.

LeEMMA 3. If 1> 5 and m > 3, then |A4| > 2.

Proof. B, c A;implies |45 > 1. If 4; = {a}, then 4; = A, = X\ {a}
is a closed set and so a cannot belong to C\C for any set C. Thus 4; < 4,
= A, implies ae¢A,. Hence a¢B, and 8o aeB,. Therefore it follows that
B, = A, which is a contradiction. Hence |4,| > 2.

LEMMA 4. If the maximal number of relatives 18 attained, there is | A, < 1
and |B,;| < 1.

Proof. It is easy to see that no proper subset of A, and B, appears
in any A, or B;.

We now are prepared to prove our Theorem 1. The proofs are diffe-
rent for different 7.

If 2n =1+m = 12, then there must be the case I =7, m =5
(or I =5, m = T). By lemma 1, |4,] > 3; also by lemma 2, |[4;| > 3. As
A, = A,, hence |X|> 6.

For 2n =1+4+m = 10 there are two different possible cases: either
l=m =5o0rl =17, m = 3. In the former case, |4, = |45 > 3 by lemma
2, and A, c A, implies |4,| > 2. Thus | X| > 5. In the latter case, |4,/ > 3
by lemma 1, and |44 > 2 by lemma 3. Thus still | X| > 5.

For 2n =1+m = 8 there are also two different possible cases:
either! =7, m =1orl =5, m = 3. In the former case, |4,] > 3 by lem-
ma 1, and since A, # A, = A4, 850 A; = A, # . Hence |X| > 4. In the
latter case, |4;] > 2 by lemma 3 and the inclusion 4, > 4, gives |4, > 3.
As A, = A, # A, = A,, s0o A, #@. Thus | X| > 4.

The cases m < 4 are trivial, we omit the proofs.

For m =17, it is proved by Herda and Metzler in [2].
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2. Number of non-homeomorphic topologies. Throughout this section,
we let X be a finite space with cardinal » and let 4, be a potential K, -set
of X, that is A, may produce 2n relatives under some topologies. Such
kind of topologies are said to be “good”. Obviously, not all topologies
given to X are “good”. In this section, we shall find out the number of
non-homeomorphic “good” topologies for each n. Denote this number
by T (n); of course, the value of T'(n) depends on n. By the result of Herda
and Metzler [2], we need only to consider the cases n < 7.

ProrpositionN 1. T(2) = 2.

Proof. Suppose X = {a, b} and let A, = {a}. If {@} = {a, b}, then
we have A, = {a, b}, A; =0, B, = {b}. The set {b} can be closed or not.
So it gives two distincet topologies.

ProposiITION 2. T(3) = 3.

Proof. Let X = {a, b, ¢}. In order to obtain six different sets from
a subset of X under our construction, there must be a set with a non-
trivial closure. Let us put {a} = {a, b}. We then get two distinct topologies
by setting {b} = {a, b} and {c¢} = {c} or {¢} = X. Starting with 4, = {a},
we get six relatives of 4,, so these two topologies are “good”. A third
topology can be obtained by taking {b} closed and {¢} = X.

ProrositioN 3. T(4) = 5.

Proof. Let X = {a,b,c,d}. There can be | =7, m =1 or Il =5,
m = 3. In the first case, we can find two possible closed sets with cardi-
nal 3, namely the set 4, by lemma 1 and the set 4, by lemma 4. Since A,
is closed, so int(4,) S 4,, that is, 4G 4,. As |4, = 3 and int(4,) # 9,
so |4, = 2. Nowlet usput 4, = {a, b, d}, A, = {b,c,d} and A, = {a, b}.
Their intersections {b, d}, {b} must therefore be closed. Considering {d}
to be closed or not, we obtain two distinet topologies. In the second case,
we easily obtain two closed sets, namely 4, = {a, b, d} by lemma 4 and
4, = {c¢, d} by lemma 3. Their intersection {d} is also closed. So we can
only define {a} = {a, b, d} or {a, b}; {b} = {b} either {a, b} either {a, b, d}
or {b, d}. This gives us three new non-homeomorphic topologies. Starting
with the set {a, d}, we can verify that all these topologies are “good”.

ProrosiTioN 4. T'(5) = 7.

Proof. Let X = {a, b, ¢, d, e}. There are two different possible cases:
either I =7, m =3 or Il =m = 5. In the former case, we easily obtain
three closed sets, namely the set A, = {a, b, ¢, d} by lemma 4, A, =
{e, ¢, d} by lemmas 1 and 3, and the set 4, which is a closed proper subset
of 4,. By lemma 3, A, = {a, b, d}. So their intersections {c, d} and {d}
are closed. Since the space X is finite, we can describe the topologies
by taking the closure pointwise. Under our construction, the followings
are bounded to be happened: {a} = {a, b, d}, {d} = {d}, {e} = {c, d, €}.
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For the sets {b} and {c¢} it is then only possible to define {b} = {b}, {b, d}
or {a, b, d} and {c} = {c} or {c¢, d}. In this way we obtain six topologies
and five of them are non-homeomorphic. Starting with the set {a, c}.
We can verify that all of the above topologies are “good”. In the latter
case, | =m = 5. We have |4;] = 3, this is obtained by the fact that
A; = A, = A, implies |Ag|>2 and by lemma 2. Put 4; = {a,b,c}.
Also by lemma 4, we have |4;] = |Bs] = 1. Put 4; = {¢}, B; = {a}.
Then A, = A, = {d, e}, so it follows that {¢} = {d, e}. By lemma 2, {b, ¢}
c Ay N B, |By| = 3,and so {a} = B; = {a, d}. It follows {d} = {d} since
{d} is the intersection of {a} and {e}. Moreover, it is easy to see that be4,,
ceA;\ A, or vice-versa. Then, by {b, ¢} = A, N B,, we have be{c} and
ce{b}, thus {b} = {c}. Now define (b} = {b, ¢} or {b, ¢, d}. These give
another two “good” topologies.

ProrosITION 5. T'(6) = 4.

Proof. Let X = {a,b,c,d, e,f}. The only case is I =7, m = 5.
By lemma 4, we can put 4, = {a, b, c,d, e}, and by lemmas 1 and 2,
put A, = {d,e,f}, A; = {a, b, c}. Since A5 = A, # A, this gives A,
= {a, b, ¢, d}. By lemma 2, we may assume that {b, ¢} = B;. With this
and by lemma 4, we have By = {a}, B, = B; = {a, d}. Therefore closures
of {d}, {f}, and {a} are fixed. Moreover, {b} and {c} has the same closure
(see [3], lemma 2). For the rest of points, it is only possible for us to define
{e} = {e} or {d, e} and {b, c} = {b, ¢} or {b,c,d}. These give us 4 non-
-homeomorphic topologies. Starting with the set 4, = {a, b, ¢}, we can
verify that our topologies are “good”. '

ProrosITION 6. T'(7) = 6.

Proof. Let X = {a,b,c,d,e,f,g}. By lemma 4, we can put A4,
= {a,b,c,d,e,f}. As int(4,) = A4, o 4,, so |4,/ > 2. By symmetry,
|B,| > 2. B, is an open set contained in A, and so B, c 4; = int(4,).
But by lemma 3, |45 N Bg| > 2, so |44 > 4. Since 4; = A,, by lemma
1 it follows that |4, = 4. By symmetry, |Bs| = 4 and hence |B,| = |B;
= 3. Put 4, = {e,f, g}, A; = {a, b, c,d}. The fact 4, = 4, = A, gives
us A4¢ ={a, b, c,d, e} and A, = {f, g}. Nowlet us put B, = {b, ¢, d,e, f, g},
B, = {a,b, e}, B, = {¢,d, e, f,g}. Therefore we obtain {g} = {e, f, ¢},
{a} = {a, b, ¢}, and {¢} = {e} as {¢} = A; N A,. The sets {b, ¢} = B, N B,
and {e,f} = A, N A, must be closed. Hence {b} = {b} or (b} = {b, ¢},
and {f} = {f} or {f} = {¢, f}. By lemma 2 in [3], {¢} = {d}. We can put
either {c¢,d} = {¢,d} or {¢,d} = {¢,d, e}. In this way, we obtain six
distinet topologies(!). Starting with the set A, = {a, ¢, f}, we can verify
that these topologies are “good”.

Concluding these six propositions, we obtain immediately the following

. (*) The Theorem 2 given by Herda and Metzler in [2] is not true. They did
not consider the possibility of inserting a number four into the set {1, 2, 6, 7}.
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THEOREM 2. Let X be an n-point set with n < 7. If A, is a subset of X
which is a K,-set under some “good” topology, then the number of non-home-
omorphic “good” topologies T (n) for each m can be determined and is shown
by the following table

T(n)

3. Algebraic closure. In this section, we introduce the notions of-
abstract algebras and algebraic closure. We shall show that our results
obtained in the preceding sections do not hold if the topological closure
is replaced by the algebraic closure.

By an abstract algebra (X ; F') we mean a set X and a family of funda-
mental operations consisting of X-valued functions of several variables
running over X. If X = {a,b,...} and F = {¢p, v, ...}, we shall sometimes
write (a, b, ...; @, y,...) or (X;¢,y,...) instead of (X; F).

The n-ary operations ex(z,, ..., 2,) =z, (k =1,2,...,n;n =1,2,...)
are called trivial. The smallest class which contains trivial operations
and is closed under composition of these fundamental operations
is called the class of algebraic operations. The values of constant algebraic
operations are called algebraic constants. If 4 is a non-void subset of X,
then the smallest subalgebra containing A, that is, the smallest set which
contains A and is closed with respect to the algebraic operations,
will be called algebraic closure of A and denoted by A. & is the set of
algebraic constants. The algebraic -closure of A satisfies the following
three axioms:

() 4 <4,
(ii) If B< A, then Bc 4,
(i) A = 4.
More about algebraic closure and abstract algebras the reader can
find in [5]. The following is easy to prove.

THEOREM 3. Let (X; F') be an abstract algebra, A a subset of X. Then
at -most 14 distinct sets can be constructed from A by taking the algebraic
closure and complementation successively in any order.

Proof. Just need to observe that lemmas 3 and 4 remain valid for
algebraic closure and observe that the inclusion A, c 4, < A, is true.
(See [5].)

We have seen in section 1 that the maximal number of relatives of
a subset A4, in an n-element topological space X is 2n (n < 7). Naturally,
one would ask whether the same thing holds in abstract algebras. The
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answer is not. In fact, let X be an n-element algebra, A, be a subalgebra
of X which gives the maximal number of relatives. Denote this maximal
number by V(n) for each n. We claim that

(i) V(3) = 8.

Proof. Let (X; F) = (a, b, ¢; ¢, v) where ¢ (x) = b, w(a) = p(b) = b,
p(c) = a. Start with {a}. Observe that {a} = {a, b}, {¢} = X, ® = {b}.

(i) V(4) < 10.

Proof. If I =7, m > 5, then |45 > 2 by lemma 3. A;c A, c 4,
implies |A,| > 4. Thus if |X| =4, then A4, = X. This implies 4, =&
and so A4, = A, = A, = X = A,. Contradiction.

Example 1. Let (X; F) = (a, b, ¢; ¢, ) where ¢(x) = b, y(d) = a,
p(a) =d, p(b) = yp(c) = b. Start with A, = {a, ¢}, we obtain 10 distinct
sets.

(iii) V(5) < 12.

Proof. If 1+m = 14, then |4,/ >1, |By/>1 because A, # A,.
Hence |B,| = |By| > 2, |4, = |4;] < 4. B,c A;< A, implies |B,| = 2
and |B;] = 3. But B, « By « B, implies |B,| > 5 which is a contradiction.

Example 2. Let (X; F) = (a, b, ¢, d, ¢; ¢, v), Where

dif z =e,

p(x) = cif v Lo, y(z,y) =l

b if (x,y) = (a,d),
¢ if (v,y) # (a,d).

Start with A, = {a, d}; we obtain 12 distinct sets.
Example 3. Let (X; F') = (a, b, c,d, e, f; 9, ), where

bif v =a,
cif z =0 and y =f,

p(x) =({eil ¢ = f, W(m’y)=[dﬁ(w,y)¢(b,f).

d if z¢{a,f},

Start with A, = {a, ¢, ¢}; we get 14 distinct sets.

Concluding the above results, we obtain

THEOREM 4. Let X be an n-element set. Then there exists an abstract
algebra (X; F) and a subset A, of X such that, by taking algebraic closure
and complemention operations to A,, in any order, we obtain

(1) 2™ relatives of A if n < 3,
(2) 2(n+1) relatives of A if 3 < n <6,
(3) 14 relatives of A if n > 6.

The number of relatives of A cannot be enlarged.
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