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REGULARITY OF BANACH LATTICE VALUED MARTINGALES
BY

J. SZULGA (WROCLAW)

In the present paper we consider natural analogues of classical mar-
tingale theorems in Banach lattices. We obtain also martingale charac-
terization of order or geometric structure of the underlying Banach lattice.

1. Introduction. In the theory of classical real martingales there
is a principal fact known as

BASIC SUBMARTINGALE THEOREM (cf. [4], p. 63). Every integrable
submartingale {X,,n € N} satisfying the condition

supEX; < oo -
n

converges a.s. to an integrable random variable.

Now, a submartingale taking values in a Banach space equipped
with a partial ordering can be defined in a natural way. In [7] one can
find a try of a generalization of the theorem above in this direction.
However, the above-mentioned result is not a copy of the real-case
theorem. A submartingale, in general, is required to have some stronger
properties to be convergent. On the other hand, this situation gives us a
possibility of characterization of the underlying structure of a Banach
space (cf. [6] and [7]).

Section 3 contains some results connected with the decomposition
theorem; then some analogues of the Basic Submartingale Theorem
are considered. These are stronger than that contained in [6], and also the
class of Banach lattices, where the Basic Submartingale Theorem holds true,
is described. In addition, we give some application to the cone of absolutely
summing operators.

2. Notation. Throughout the paper % denotes a Banach lattice,
i.e., a vector lattice equipped with the monotone (|z| < |y| implies |z||
< |lyll) and complete norm. We write, as usual,

r+t = sup(#,0), o~ =sup(—z,0), |o| =sup(e, —a).
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For any elementary facts concerning vector lattices used in the
text consult [3] and [5].

By %, we denote the cone of non-negative elements from . A Ba-
nach lattice is said to be an abstract L-space (AL-space) if

(1) le+yll = llell+llyll for all z,yeZ,.

A Banach lattice is said to be a KXB-space if no sublattice is isomor-
phic to ¢, (the Banach lattice of all real null sequences with the supremum
norm and the coordinatewise ordering).

Now, let (2,%, P) be a probability space and let p > 1. We denote
by L,(Q2,#,P; ¥) = L,(%) a Banach lattice of all strongly measurable
functions X: Q — Z such that

IXl, = (BIX|P)'? < co.

Obviously, X <Y, X, YeL,(%), if X< Y as. A sequence {X,,
n €N} c L,(Z) is said to be a p-integrable submartingale (if p = 1, briefly,
submartingale) with respect to the increasing family of sub-o-fields {#,} if
each X, is #, -measurable and

(2) E(Xg,,+1 |#,)=2X, forall neN.

X, is called a supermartingale if > in (2) is replaced by <, and X,
is called a martingale if it is both a submartingale and a supermartingale.
A martingale is called regular if it can be decomposed as a difference of
positive martingales. From now on all Banach spaces considered are assum-
ed to be separable.

3. Krickeberg decomposition. We start with an immediate generali-
zation of the non-random situation:

LEMMA 1. Let ¥ be a KB-space. Let {A,,n e N} be an increasing
positive sequence of random vectors. If

supE [4,|° < oo,
n

then there exists an A € L,(¥) such that A, -~ A a.s. and in L,(%). Fur-
ther, A = sup{4,}.
Proof. Let {4,} = L,(%) satisfy the assumptions of the lemma.
Then
sup [l4,(w)]| < co  for almost all w e 2.
n

Since & is a KB-space, A, converges a.s. to some random vector A
(cf. Proposition 5.15 in [56]). By the Lebesgue theorem,

AeL,(Z) and A =1lim4, in L,(%).

Also, A =sup{4,} (cf. Theorem 5.9 in [5]), which completes the
proof of Lemma 1.
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Now, a well-known Krickeberg decomposition theorem (cf. [4],
Pp. 63) can easily be generalized into a Banach lattice.

PRrOPOSITION 1. Let & be a KB-space. Let X = {X,} be a submartingale
satisfying the condition
supE | X}|| < o.
n

Then X can be decomposed in the form X = U—V, where U= {U,}
18 a positive martingale and V = {V,} is a positive supermartingale.
Remark 1. If X is a martingale, then, clearly, V is also a martingale.
Proof. Since {X;,k € N} is a positive submartingale, {Y%, k > n}
is a positive increasing sequence, where
Y, =EX}|#,) for k>=n.
Also
sup E||Y}|< oo for all n e N.

k=n

By Lemma 1 there exists a limit
(3) U, =1imY; for all neN,
k

and U = {U,} is a martingale, since

E(U,.,|#,) = E(lim Y!*|#,) = imB(¥Y'*!|#,)
k k
= limE(X; |#,) = U,.
k

Since E(X; |#,)> X} for k>n, we have U> X, ie. U,> X,
for all n € N. Therefore X, = U,—V,, where

(3") v,Lu,—x,>o0.

This completes the proof of Proposition 1.

Remark 2. The decomposition obtained in Proposition 1 is the best
in the following sense:

If X =U'—V', where U’ is a positive martingale and V' i8 a positive
supermartingale, then U< U and V< V', where U and V are defined in
(3) and (3'), respectively.

The above-mentioned and connected results can be expressed in
terms of lattice theory. That is, let us denote by

wlp(Q,f,P; ) =mtp('%‘)
a vector space of Z-valued p-integrable martingales defined on (2, #, P).

The vector space I, (%) can be partially ordered by the canonical order-
ing of [L,(%)]°. Now we have
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PROPOSITION 2. Let & be a KB-space and let MeIM,(¥). Consider
the following statements:

(i) supE | MS|P < oo;

(ii) M s regular;

(iii) M = sup(M, —M) exists in M, (Z).

Then (i) = (ii) <> (iii).

Proof. It suffices to show (ii) < (iii), since the remaining implications
follow by the arguments similar to those given in Proposition 1.

So, first, let M = U—V, where U, V € [N,(%)],. Since

B(M;|#,)< U, forallneclN and k>n,
by Remark 2 there exists

Mt =gsup(M,0) in M, (%),
where
' Mt = {imEB(M} |#,),n e N}.

k
Similarly,
M- =sup(—M, 0) = {limE(M, |#,),n N}
k

exists in IM,(Z), and so
ME M+ M- = sup(M, —M).
On the other hand, (iii) = (ii) follows clearly since
M = |[M|—(IM|—M),

so the proof is completed.

One may ask when (i) of Proposition 2 is equivalent to (ii) or (iii).
The answer to this and other questions is contained in the next section.

4. Submartingale convergence theorems. We say that a Banach
lattice satisfies the Submartingale Boundedness (Convergence) Theorem
it any %-valued submartingale satisfying the condition

supE | X} < oo
n

is bounded in L, (%) (converges a.s. to some X € L,(Z)). We will write
Z €S8BT (£ € SCT).
ProrosiTION 3. Let & be a KB-space. Then the following statements
are equivalent:
(i) & eSBT (& €SCT).
(i) Any positive supermartingale is bounded in L,(Z) (converges a.s.

to some X € L,(%)).
(iii) Any positive martingale 18 bounded in L,(%Z) (converges a.s. to

some X € L,(%)).
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(iv) Any martingale with
sup B LX7 || < oo

18 bounded in L,(Z) (converges a.s. to some X € L(Z)).

Proof. We prove Proposition 3 for L,-boundedness since similar
arguments can be used for the underlying convergence.

(i) = (ii). Let {X,} be a positive supermartingale. Then {—X,} is
a submartingale with supE ||(—X,)*|| < oo. Thus

sup B |X, || < oo.
n

(ii) = (iii) is evident.

(iii) = (iv) follows immediately from Proposition 1.

(iv) = (i) holds by arguments similar to those used in the proof of
Theorem 4.1 in [7].

Remark 3. In view of the Chaterji theorem it is easy to check that
Z eSCT iff ¥ e SBT and £ has the Radon-Nikodym property. Hence
Z e SCT iff & is isomorphic to a sublattice of I, (cf. Theorem 2 in [6]).

THEOREM 1. The following statements are equivalent:

(i) & €SBT.

(ii) For any sequence of positive independent real random wvariables
{f.} and for any sequence of positive vectors {x,} we have {x,} = & .

(iii) & is tsomorphic to an AL-space.

LEMMA 2. Let us put

= {a: = (o) e 2 Ny L sup | X tol]: F < N s finite) < oo}
F
and

Z, ={@ = {2} < £ l2lly, £ sup {| 3 Ifioi
F

,i F o N is finite) < oo},

where {f;} 18 a sequence of positive real random variables with finite p-th
moments. Then Z and Z, are Banach lattices under the natural ordering.

Proof. Evidently, 2 and Z, are vector lattices with monotone norms.
The completeness of the defined norms follows from standard functional
analysis arguments (cf. [2], Theorem 5.2).

LEMMA 3. There exists a sequence of positive independent real random
variables {f}} such that in an arbitrary Banach lattice the inequality

n n .
D
E ll; 1P < 0“ E f,?wf“p for every ne N, 2z, ..., ¢, €%,
i=1 i=1

holds, where C is some positive constant.



308 J. SZULGA

Proof. Let {a,} be a sequence of reals such that
0<a,<1forall neN and 17 l—a) =a>0.
=1
Let {S,} be a sequence of independent events with P(S,) = a,. Put
fr‘: = a, I (Su)’
where I(-) is the indicator function. Let us write
n
t=1

Then, given vectors z,...,2, € ¥, we have
llfl’ fiaf,>B| iﬁ,’fmll‘”I(K,. ~1)
-1 =1

= MBI} #0, ff = 0 for j i)l

i=1

> Z”‘ |l 1P Zn‘ (l—a)/l—a)>a 2": lll1? 5

=1 j=1 =1

which completes the proof of Lemma 3.

Proof of Theorem 1. (i) = (ii). Let {f,} and {,} be as in (ii)
and let

wwp| 8] < o
" =1
Now the martingale

X, = Z(Efi_f{)wﬂ nenw,

i=1

has the positive part {X;} bounded in L, (%), hence X, itself is L,-bound-
ed by hypothesis. Therefore,

Slip “‘Zn‘fia’zl

(ii) = (iii). It suffices to show that, for all z,,...,2, € %,

(4) i< ollj,‘ 2
=1 =1

1<°°'
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for some constant C > 0. Then we put

[l = sup {2 l@:ll: @1y ..., @, € X and leal < lwl}.
i=1

im1

Then |||« is the complete monotone norm equivalent to the original
one and additive for positive elements from % (cf. [5], p. 242, see also [6],
Lemma 2). Hence the identity operator on £ is the required isomorphism
from Z onto an AL-space. Now (4) holds by Lemmas 2 and 3 and by the
Closed Graph Theorem. Thus (ii) = (iii) is proved.

(iii) = (i). Now, if ||-|| denotes an AL-norm, then by a standard
argument (one can apply the fact that the set of simple functions is dense
in L,(%)) we have

E|X| = |E|X]||] for X e L,(Z).
Thus, if {X,} is a submartingale with supE || X;}|| < oo, then
n

supE|X,| < 2 supE |X7[+ E|X,|| < oo,
n n

gince |#] = 22t —x for 2 € & and since EX, > EX,. This completes the
proof of Theorem 1.

Remark 4. In the context of Theorem 4.1 in [5] there arises a ques-
tion concerning the behaviour of p-integrable submartingales with

supE X [P < oo.
n

Proposition 3 can easily be formulated and proved after changing
the power 1 into p (p > 1). However, even on the real line there exists
a submartingale with sup E | X; ||’ < oo (or a positive p-integrable martin-

n

gale, etc.), but, at the same time,
Sup E | X, |IP = oo.
n

To see this it suffices to put

X, = D (i7P—iI(8)),

i=1
where {8,} is a sequence of independent events such that P(8,) = ¢ "

5. Cone of absolutely summing mappings. Let 2 be a Banach lattice
and let # be a Banach space. A linear operator I': & — # is said to be
cone absolutely summing (c.a.s.) if, for any summable positive sequence
{z,}, {Tz,} is absolutely summable (cf. [6], Chapter IV.3, for the prop-
erties of c.a.s. operators used in the sequel).
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THEOREM 2. Let T: & — ¥ be a linear continuous operator. Then the
following statements are equivalent:
(i) T 48 c.a.s.
(ii) For any X-valued submartingale {X,} such that

sup [EX]| < o0
n
{T'X,} i8 bounded in L,(¥)..
(iii) For any Z-valued submartingale {X,} such that
supE || X} || < oo
n
{T'X,} is bounded in L,(¥).
(iv) For amy increasing positive sequence {A,} = L,(%) such that
sup[E4,| < o
n
{TA,} converges both a.s. and in L,(%).
Moreover, if ¥ is a XB-space, then any of statements (i)-(iv) i8 equiva-
lent to
~ (v) For any positive (reqular) martingale {X,}, taking values in %,
{I'X,} is bounded in L,(%).
Proof. (i) = (ii). Let {X,} < L,(¥) be a submartingale and let

sup [EX, | < oo.
n

Since T is c.a.s. iff there exists an 2* € * (2* denotes the norm dual
of %) such that for all x € &

1Tz|| < <l=l, z*>,
we have

EBITX,| < E<|X,|, z*> = <E|X,]|, 2*) < 2{o*|sup [EX7| < oo.
n

(ii) = (iii) follows immediately.
(iii) = (i) ((iv) = (i)). Let {«,} be a positive summable sequence,
z, € Z. Put

n n
4, = Zfiomi and X, = Zwi_'An’
i=1 i=1

where f,n =1,2,..., are defined as in the proof of Lemma 3. Then
{A,} is a positive increasing sequence with

E4, = Zwi’
i=1
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and {X,} is a martingale with sup E|X;| < co. Now, by hypothesis,

n
sup B|| 3 fia|| < oo.
n i=1
Thus {T'z,} is absolutely summable, since by Lemma 3

Zn: |IT2;|| < const-supE ” Z”?ﬁxil
i=1 n i=1

(i) = (iv). T is c.a.s. iff there exists an AL-space 2 such that the

diagram
T
x > Y
NI
z

commutes, where 7T, > 0 and 7, are continuous linear operators. Now,
if {4,} increases and sup|EA,| < oo, then
n

E|T,4,] = |IET,4,]l < IT4/Isup |[EA4,] < oo.

Since each AL-space is a KB-space, by Lemma 1 the sequence {1, 4,}
converges both a.s. and in L,(Z), so also does {T'A4,} = {T,T,4,}.

To show (i) = (v) = (iii) we assume that Z is a KB-space.
(i) = (v) follows, since

E|ITX,|< (BX,, |z*> for some z* e 2™,

where {X,} is a positive martingale and T is c.a.s.
(v) = (iii). Let {X,} be a submartingale with

supB | X1 < oo.
n

{X,} can be decomposed in the form X = M+ A, where M = {M,}
is a martingale and 4 = {4,} is an increasing positive sequence (cf. [4],
P. 145, see also [7], p. 467). Since {4, } is positive, we have

supE || M7 || < supE | X7 < oo.
n n
Thus, by Proposition 1, M = M* —M~ and, consequently, by hypo-
thesis,
supE||TM, | < oo.
n

10 — Colloquium Mathematicum XLI.2
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To finish the proof it suffices to note that
A, < X}y4+M; =X} + M} —-M; <2X;—-M,,
80
E|TA, < 2|TI\E|X; |+ E|TM,]|.

Thus the proof is complete.

COROLLARY. Let T: ¥ - % be a c.a.s operator and assume thalt ¥
has the Radon-Nikodym property. If {X,} is a submartingale satisfying
the condition

sup |[EX; | < oo,
n

then there exists a Y € L,(%) such that TX, - Y a.s.

Proof. Let us decompose {X,} by the Doob formula: X, = M, + A4,,.
By hypothesis we have

sup||[EM;}||< co and sup|EA,| < oco.

Thus, by Theorem 2 ((ii) and (iv)) and by the Chaterji Theorem [1],
{T'M,} converges a.s. and {T4,} converges a.s., since {T'M,} is the martin-
gale bounded in L,(%).

The Corollary generalizes Theorem 4.2 in [7].

Remark 5. The terms of type “for any martingale...” etc. are
meant in the sense “for any probability space and for any martingale
defined on it...” etc. However, one can assume a probability space to
be sufficiently “large” only because of the used constructions.
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