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MORITA EQUIVALENCE OF ALGEBRAIC THEORIES

BY

J. J. DUKARM (VICTORIA, B. C)

Algebraic theories R and T are said to be Morita equivalent if the
corresponding algebraic categories Alg(R) and Alg(T) are equivalent as
categories. Morita equivalence in this sense has been characterized in various
ways for several special cases; some of the results of Banaschewski [1], Hu
[5], Knauer [6], Morita [9] (see Cohn [2] for an exposition), and Wraith
[11] can be construed as providing such characterizations. The main result
of this paper* Theorem 2.6, is a syntactical characterization of all the
algebraic theories R which are Morita equivalent to a given algebraic
theory T

1. Notation and definitions. An algebraic theory is a locally small
category T together with a product-preserving functor J;: Card® — T which
determines a bijective correspondence between the objects of T and the
cardinal numbers, which are identified with the objects of a skeleton Card of
the category Set of sets. It follows that every object of T is a power of one
particular “base” object X = J (1) relative to a distinguished cone of projec-
tions indexed by Jy. A T-algebra in a category M is a product-preserving
functor A: T — M; the full subcategory of Set” whose objects are the T-
algebras in Set is Alg(7). The underlying-set functor U;: Alg(T) — Set has
the free T-algebra functor Fr: Set — Alg(T) as its left adjoint. The basics of
this style of infinitary universal algebra are presented in [11].

An object A in a category M is said to be tractable if there is an
algebraic theory T and a full and faithful T-algebra ‘4’: T — M for which A
=‘A’(X); in that case, T is called the algebraic structure of A, and ‘4’ is
called the structure algebra of A. Note that, for every algebraic theory 7, the
underlying-set functor Uy is a tractable object in Set*®” whose algebraic
structure is T.

* The results reported in this paper appear in the author’s Ph. D. Thesis [3], written
under the supervision of Prof. A. H. Lachlan.
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2. Morita equivalence of algebraic theories. Our starting point for discus-
sing Morita equivalence is the consideration of equivalence functors Alg(T)
— Alg(R). It will be helpful to recall some basic facts about algebra-valued
functors; these results follow from elementary category-theoretic considera-
tions and are closely related to the structure-semantics adjointness discussed
in [8], [11], and — for finitary universal algebra — in [7].

Every algebra-valued functor of the form G: M — Alg(R) corresponds to
an R-algebra R — Set™ whose “underlying object” is the set-valued compo-
nent UgG of G. Conversely, every R-algebra R — Set™ whose underlying
object is U determines a functor M — Alg(R) whose set-valued component is
U. In particular, if U is a tractable object in Set™ whose algebraic structure
is R, then the functor E;: M — Alg(R) determined by the structure algebra
‘U: R—Set™ is called the comparison functor for U. For example, the
identity functor Alg(R) — Alg(R) is the comparison functor for Ug.

It is not difficult to see that an equivalence functor E: M — Alg(R) is
the comparison functor for its own set-valued component Upg-E, whose
algebraic structure is R. Thus, the problem of characterizing all the algebraic
theories R which are Morita equivalent to a given algebraic theory T reduces
to the following two problems:

2.1. Characterize those tractable functors U: Alg(T) — Set whose com-
parison functor E; is an equivalence functor.

2.2. For every such functor U, describe the algebraic structure R of U.

Our first result provides a solution to Problem 2.1. Objects A and B in
a category M are said to be retract-equivalent if, for some cardinals m and n,
the powers 4" and B™ exist, and A4 is a retract of B™ while B is a retract
of 4"

2.3. THEOREM. Let T be an algebraic theory and let U: Alg(T) — Set be a
tractable functor. Then the comparison functor Ey is an equivalence functor if
and only if U and Uy are retract-equivalent in Set*®D,

Proof. Is is easy to see that if E; is an equivalence functor, then U is
represented by a T-algebra A which has the same category-theoretic proper-
ties as a free algebra; this is because E;(A) is a free algebra. In particular, 4
is dually retract-equivalent to the free T-algebra F; (1), which means that U
is retract-equivalent to Uy .

Assuming now that U and Uy are retract-equivalent, we shall use the
main result of [8] to prove that E; is an equivalence functor. According to
Linton’s theorem, E is an equivalence functor if and only if U has a left
adjoint and preserves and reflects congruence relations and regular epimor-
phisms. In both Alg(T) and Set it happens that the congruence relations are
the equivalence relations, i.e,, the binary relations which are reflexive, symmet-
ric, and transitive: and the regular epimorphisms are the surjective homo-
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morphisms and the surjective functions, respectively. Suppose that r: Ut
— U and g: U™ — Uy are retractions; note that every component of r or g is
a retraction in Set, so must be a surjection.

The functor U is representable, since it is a retract of the representable
functor U%. Representable functors Alg(T) — Set have left adjoints, so U has
a left adjoint.

To show that U preserves regular epimorphisms, suppose that h: A — B
is a surjective homomorphism: then Uy (h) is a surjective function. so U} (h)
is surjective. Then U (h):-r, = rg- U (h), where the right-hand side is surjec-
tive, so U(h) is surjective. Now we shall show that U reflects regular
epimorphisms. If h: A — B is such that U (h) is a surjective function, then
U™ (h) is also surjective. But then Uy (h):g, = gg- U™ (h), where the right-hand
side is surjective, so Uy (h) is surjective, i.e., h is a surjective homomorphism.

Since U is representable, it preserves kernel pairs; hence it preserves
congruence relations. The proof that U reflects congruence relations is as
follows. As remarked above, it is sufficient to show that U reflects equival-
ence relations. Given a binary relation E in Alg(T) such that U(E) is an
equivalence relation in Set, it is easy to verify that U™(E) must also be an
equivalence relation. But then U;(E), as a retract of the equivalence relation
U™(E), is also an equivalence relation. Since U reflects equivalence relations,
E is an equivalence relation in Alg(T).

Theorem 2.3 is a variant of a result which is apparently part of the
unpublished “folklore” of category theory: Ey is an equivalence functor if
and only if U: Alg(T) — Set is represented by a regular progenerator, i.c., by
a T-algebra which is dually retract-equivalent to the free T-algebra F(1).
See, e.g., Lawvere’s remarks in [7], p. 86 ff., and a comment by Wraith in
[11], p. 54. This “folklore” result is a natural generalization of the Morita
theorem of module theory (see [2] and [9]). Hu’s theorem characterizing the
category of Boolean algebras as a finitary algebraic category (see [S]) is
derivable from the “folklore” version of Theorem 2.3, as is Wraith’s result in
[11] that the matrix theories of an algebraic theory T are Morita equivalent
to T

With the next two lemmas we shall solve Problem 2.2. Recall that if B is
a retract of A, withr: A— B and s: B— A such that r-s =idg, then u =s-r
is idempotent, i.e., u-u = u. On the other hand, if u: A — A4 is idempotent
and factors as u = s-r, where r: A — B is an epimorphism and s: B— A4 is a
monomorphism, then in fact r is a retraction and s is a coretraction. The
retract B is called an image of u.

24. LEMMA. Let A and B be objects in a category M which has products.
Then A and B are retract-equivalent, with A being a retract of B™ and B being
a retract of A", if and only if there are arrows u: A"— A", d: A— A"*"™, and
p: A"*™ — A such that u'u=u, u"-d =d, p-d =id,, and B is an image of u.
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Proof. If u'u =u and B is an image of u, then — as was pointed out
above — there arer: A"~ B and s: B—+ A" withs‘r=uand r-s=idg. If d
and p are given as described, then it is easy to verify that p-s™ B™— A is a
retraction with coretraction r"-d: A — B™.

Now suppose that A is a retract of B™ and B is a retract of A". Then we
have r: A" —+ B and s: B— A" with r-s =idg, and we also have g: B™ — A4
and h: A — B™ with g-h =id,. The arrows called for by the lemma are u
=sr,d=s"h and p=g-r"

Given an algebraic theory T with an idempotent operation u: X" — X",
we define a new algebraic theory T|u, the restriction of T to u, as follows.
Say that an operation g: X"** — X"*J of T is a u-operation if w-g-u* = g.
Note that a composite of u-operations is a u-operation. Then T|u is the
category whose arrows are the u-operations of T and whose identity arrows
are the powers (computed in T) of the operation u. The product-indexing
functor J: Card®® — T|u sends each arrow f: j— k of Card to w/-J;(f)-u*.
The verification that T|u is actually an algebraic theory is contained in the
next lemma.

25. LEMMA. Let A be a tractable object whose algebraic structure is T
and let B be the image of an idempotent arrow u: A" — A". Then B is a
tractable object whose algebraic structure is T|u.

Proof. There are r: A" — B and s: B— A" with s'r =u and r-s = id.
It is obvious that a retract of a tractable object is tractable. Let R be the
algebraic structure of B. For each R-operation g: B*— B/, let t(g) = s/ - g 1*;
it is easy to verify that this defines an isomorphism of categories t: R — T|u
such that t-Jg =J.

The main theorem follows from 2.3-2.5.

2.6. THEOREM. Algebraic theories R and T are Morita equivalent if and
only if, for some cardinals m and n, there are T-operations u: X" — X" d: X
— X"*™ and p. X"*™ — X such that u'u=u, u™-d=d, p-d =idy, and R
=~ T)u.

If R and T are finitary and Morita equivalent, then the cardinals m and
n mentioned in Theorem 2.6 may be taken to be finite.

2.7. CorOLLARY. Retract-equivalent tractable objects in any category have
Morita equivalent equational structures.

3. Examples and related results. In this section we show that Theorem
2.6 is a direct generalization of the characterization of Morita equivalent
monoids given by Banaschewski [1] and Knauer [6]. Two well-known
representations of m-valued Post algebras are shown to provide the data
required by Theorem 2.6 to prove that the algebraic theory of m-valued Post
algebras is Morita equivalent to the algebraic theory of Boolean algebras.
Finally, we discuss the relationship between Theorem 2.6 and a result of
Elkins and Zilber [4] characterizing Morita equivalent small categories.
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Small categories M and N are said to be Morita equivalent if the functor
categories Set™ and Set are equivalent. Banaschewski and Knauer have
found nearly identical necessary and sufficient conditions for monoids M and
N (represented as one-object categories) to be Morita equivalent as small
categories.

3.1. THEOREM (Banaschewski [1] and Knauer [6]). Monoids M and N
are Morita equivalent if and only if there are elements u, v, w of N such that
uu=u uw=w, vw=-e, and M = uNu.

Every monoid N is naturally associated with an algebraic theory N
whose nontrivial operations are all unary and form a monoid (under
composition) isomorphic to N. It is easy to see that the functor category Set"
is equivalent to the algebraic category Alg(N). The conditions given in
Theorem 3.1 are evidently the same as those given in Theorem 2.6, except
that in Theorem 3.1 we have m = n = 1. Thus, to obtain Theorem 3.1 from
Theorem 2.6 it suffices to demonstrate that if there are any operations u, d.
and p of N satisfying the conditions of Theorem 2.6, with M = N|u, then
there are unary operations ', d’, and p’ of N, which satisfy the conditions of
Theorem 2.6, such that M = N|u'. This, however, follows easily from the fact
that all of the nontrivial operations of N are unary.

For all finite m > 1, the algebraic theory P,, of m-valued Post algebras is
known to be Morita equivalent to the algebraic theory BA of Boolean
algebras. A survey of results concerning Post algebras is given in [10],
Chapter 7, where a presentation of P, is described in terms of:

(i) constants eg, €, .--, €m—1;

(ii) unary operations 7, Dy, D,, ..., D, _,;

(iii) binary operations A, v, =;

(iv) a list of equational axioms (po), (py), ---, (Ps)-

The equational axioms ensure that every m-valued Post algebra is a
Heyting algebra with respect to ep, €,—;, 1, A, v, and =, with e, being
the smallest element and e,_, being the largest one. The operation D,
coincides with “double negation”, i.e., D, (x) = 71 71 x (see [10], p. 137). The
P,-operations u, d, and p required by Theorem 2.6 to witness the Morita
equivalence of P,, and BA may be defined as follows:

(i) u is the operation X — X given by

u(x) =" x;
(ii) d is the operation X — X™~! given by
d(x) = (D1 (x), D3(x), ..., Dp—1(x));
(iii) p is the operation X" ! — X given by

p(xl’x2a'-" xm—l)= v (ei Axi)'

0<i<m
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Axiom (ps), which states that D;(D;(x)) = D;(x) for all i and j, guarantees
that u = D, is idempotent and that ¥™ !-d =d. Axiom (p,) states precisely
that p-d =idy. The operation u picks out the set of all complemented
elements in any m-valued Post algebra, and the u-operations of P, are
precisely the operations which preserve complemented elements. Proposition
14 on p. 136 of [10] states that the complemented elements of a Post
algebra form a Boolean algebra with respect to the operations which
preserve them: this corresponds to the condition BA = P,,|u.

The representation of the m-valued Post algebras as lattices of nonin-
creasing (m— 1)-element chains in Boolean algebras (see [10], pp. 143 and 144,
for details) also illustrates how Theorem 2.6 works. In this case, u, d, and p
are Boolean operations:

(i) u is the idempotent operation X™ ! —» X™ ! given by

U(Xgy Xay ooey Xm—1) = (X3, X3 AXay ooy Xy AXg A e A Xpet)s
(ii) d is the diagonal operation X — X™~! given by
d(x) =(x, x, ..., x);
(iii) p is the projection operation X™ ! — X given by
P(X1s X2y eeey Xm—q) = X4

According to Theorem 3.6 of [4], for any small categories M and N, the
functor categories Set™ and Set" are equivalent if and only if M and N have
equivalent idempotent completions. An idempotent completion of a category
M, according to Corollary 3.4 of [4], is a category I(M), containing M as a
full subcategory, such that every object of I (M) is an image of an idempotent
arrow of M and such that every idempotent arrow of M has an image in

I1(M).
3.2. THEOREM. Algebraic theories are Morita equivalent if and only if they
have equivalent idempotent completions.

Proof. If R and T are Morita equivalent algebraic theories, then we
have T-operations u, d, and p as described by Theorem 2.6, so R = T|u is
equivalent to a full subcategory of I(T). Our Lemma 2.4 and Theorem 3.8 of
[4], which does not require smallness of the categories concerned, are
sufficient to show that I(T) is equivalent to I(R).

If R and T are algebraic theories with I(R) equivalent to I(T), then by
Theorem 3.8 of [4] it follows that R and T can be embedded in a category C
such that the base objects of R and T are retract-equivalent in C. Here it
should be noted that the embeddings can be assumed to be full and to
preserve products, since C can be chosen to be equivalent to I(7). By our
Corollary 2.7, R and T are Morita equivalent.

It is clear from Theorem 2.6 that Morita equivalent algebraic theories
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do not differ in many logically interesting ways. An isomorphism R = T|u
can be seen as a kind of interpretation of R in T; such interpretations of
theories are shown in [3] to give rise to an important class of algebra-valued
functors which includes Boolean power constructions, viewed as algebra-
valued functors defined on various algebraic categories of Boolean algebras.
Because of the amount of logical machinery involved, the applications of
Theorem 2.6 to the logical analysis of algebra-valued functors are beyond the
scope of this paper and will be published separately.

In conclusion, the author would like to thank B. Banaschewski and F.
Linton for reading various versions of this paper and providing references
and suggestions. Special thanks are owed to A. H. Lachlan, who supervised
this work and provided much inspiration and helpful comment.
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