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Von Neumann constructed his model over forty years ago, however,
it was not until after his paper (1937) was published in an English trans-
lation (1945-1946) that economists took an interest in it [33], [34]. The
second most important contribution to the theory seems still to be the
paper by Kemeny et al. [14] which extended the original definition of
an equilibrium and did make it more accessible both to economic and
mathematical investigations. From those times on a great number of
papers have been published considering either the von Neumann model
itself or dealing with specific economies described by means of von Neu-
mann models. Indeed, every description of an economy by means of
linear processes with the same time difference between input and output
uses a von Neumann model or, at least, can be converted into such a model.

In the last two decades the von Neumann model was subjected to
many generalizations. By allowing matrices to have negative entries
we obtain possibilities to express instant exchange processes (Mardon [27])
a8 well to describe small economies acquiring rough materials on a market
(Lio§ [21]). By ordering vector spaces not by coordinates but by arbitrary
cones we can introduce dependent processes, even infinitely many of them,
we can also exclude some prices as not allowable and then extend the
admissible (non-negative) bundles of commodities to involve those which,
although have some negative coordinates, yet exhibit always positive
values at allowable prices (Moeschlin [29], Kapitel 8, Ballarini and Moe-
schlin [1], Z.o§ [21]). By extending the number of matrices to three or four
we express problems of consumption, labour and savings (Morgenstern
and Thompson [30], X.o8 [18], Ballarini and Moeschlin [1]), reswitching
phenomena (Lof and X.of [23]), cfficiency frontiers (Bromek [3], X.0§
and X.o§ [22]), and the list of possibilities is plausibly far from being ex-
hausted.
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This paper is a report on results concerning von Neumann models
obtained recently in Warsaw, precisely in the years 1971-1976. Most
of them have been published in the three volumes Zo§ and X.o§ [24],
4,08 and Xo8 [25] and Lo§ et al. [26], some are still unpublished. We
Teport also on results of other economists and mathematicians, but only
if their work is closely related to the problems under serutiny in Warsaw.
We concentrate our attention on mathematical results giving few or
none of the economic interpretations. No proofs are given here. They
are either available in the literature or will be published soon.

1. Basic notions and notation. By B" we denote the space of n-dimen-

sional row vectors ¢ = (@,, ¥;, ..., 2,), while by B" we denote the space
of n-dimensional column vectors

4

qQ = q2 = Q1 @2y -3y I~

qn

These spaces form a dual pair and

ag = D) w,q;.

i=1
The same notation applies to other spaces, for instance, R™ with
vectors ¥ = (¥, Yz, ---y Yp,) and B™ with vectors

P

I.’z

P = = {P1y P32y +++3 Pm) -

Pm

Any (n Xm)-matrix M with the left-multiplication serves as a trans-
formation

-M: R*—-> R™
and with the right-multiplication as a transformation
M-: R™— R,

We have (#M)p = x(Mp). The transformations -M and M- are
<called mutually dual.

A cone (convex cone) in R™ is a subset 8 of R™ such that
S+S = {wl"‘wzlwl,wz ES} c S
and
S ={lzlze8} =8 forall 1>0.
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The set S—8 = {®, —x,|®,, #, € 8} is the subspace of R" spanned
over 8. If § — 8 = R", the cone 8 is called solid. If —=», » € § implies » = 0,
the cone 8 is called pointed. The cone S is polyhedral iff there exist a finite
number of vectors x,, ,, ..., 2, such that

k
8 = {;:E,.wi]&)O, i=1,2,..., k.

A polyhedral cone is closed in the usual topology of R". The dual
cone of S is

8* = {ge B"|wq> 0 for all x e 8}.

The dual cone is always closed (as an intersection of closed half-
spaces). The dual of the dual

§** = {&x e R"|2q > 0 for all g e 8}

equals 8 iff S is closed. The dual of a polyhedral cone is polyhedral. The
non-negative orthant

tR" ={zeR"|2,>0,4=1,2,...,n}

of R" is a polyhedral cone and its dual is the non-negative orthant +R"
of R". The dual of a pointed cone is solid and vice versa.
For any cone § in R", defining

r<o* if and only if a#2—a'ed,

we get a preordering relation in R™ (reflexive and transitive) which, more-
over, preserves the algebraic operations in R", i.e. #' < #® implies #- 2®
< 22+ o2 and Ax' < Ax? for all 1 > 0. If 8 is pointed, then < is an (partial)
order, i.e. #' < 2% and 22 < 2! imply 2! = 22 If § is solid, then there are
elements z in 8 such that for every x € R" there exists a number &> 0
with # < &%. All such elements form the interior (in the sense of the metric
topology in R") of 8. We write 2! < #2 to denote that x2—a! is in the
interior of 8. This sign applies only if 8 is solid. If S is pointed, we write
o' 5 #* to denote that #' < ® and ' # 22 Thus 8 = {»|s > 0} for all
cones 8, intS = {w|z > 0} for solid S (positive vectors) and S\ {0}
= {o|® 2, 0} for pointed § (semi-positive vectors). .

If 8 is closed, then 2™ < a'® for ¥ =1, 2, ..., and 3® —» g, &'® — 5’
imply #2<2'. If 8§ is closed and pointed, then for every Z> 0 the set
{#> 0|z < z} is compact. Under the same assumptions, 8* is solid, thus
there exists a ¢ > 0 in S* and the set {x > 0|zq = 1} is compact.

We call a pair (R", 8) an ordered space (keeping in mind that it is
only preordered if § is not pointed). A linear transformation between two
ordered spaces -M: (R", 8) — (R™, U) is monotone iff # > 0 implies s M > 0
(the first inequality means # € 8§ and the second one means M e U).
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We will always investigate such transformations with U closed, precisely
with U = T*, where T is a cone in B™. By the dual transformation to -M:
(R®, 8) - (R™, T*) we shall understand then

M-: (R™ T)— (B", 8%).

It is easily seen that the dual to a monotone transformation is also
monotone.

If -M: R"—~> R™ and C is a cone in R", then T = C M, the image of C
by -M, is also a cone. If C is polyhedral, then C ¥ is also polyhedral, but if C
is closed but not polyhedral, then CM cannot be closed. It must be, how-
ever, an F,, that means a union of a sequence of closed sets. A theorem by
Bromek and Kaniewski [7] states that:

If T 48 an F -cone in R™, then there exist a linear transformation -M:
R™! . R™ and a closed, pointed cone C in R™*' such that CM = T.

2. Von Neumann models: definition. A von Neumann model consists
of eight elements: a finite-dimensional linear space R", a pointed cone S
in R", another finite-dimensional space B™, a pointed cone T in R™ and
four matrices A,, B,, A,, B; of dimension n X m, which are understood
as transformations either

‘4,, By, *4,, 'B,: (B, 8)— (R™, T*)
or
Ba"Az'yBl'yAl':(Rm’ T)"’(R”’ S*)-

Here E" and R™ are dual spaces to R® and B™, and T* and §8* are
dual cones (thus closed and solid) to T and 8, respectively.
A von Neumann model can therefore be written as

M= (Rn’ S; Rm’ Tr An Bn A21 Bz)-
The von Neumann model

iﬁ = (Rm,iT, -R”’ S; Bz’ Azy Bu Al)

is called the dual to IN.

R*, R™, B* and RB™ are called spaces of intensities, of commodities,
of values and of prices, respectively. The vectors in these spaces are denoted
by 2, y, ¢ and p, respectively, with indices if needed. The transformations
-4,, B,, Ay and B,- are called snput, output, cost and revenue transforma~
tions. When forming a von Neumann model we start with the intensity
space R™ and select a cone S of those intensities which are applicable,
then we pass to the space of prices B™ and select a cone of possible prices 7.
The matrices 4, and B, depict the technological possibilities of the system,
and the matrices A, and B, — the economic processes of forming costs
and revenues.
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Let us emphasize that § and T are not supposed to be closed, but
both are supposed to be pointed. The dual cones 8* and T™ are closed
and solid as a consequence of the definition of the dual cone.

By the definition of a von Neumann model, all four spaces under
consideration have natural bases and, consequently, natural coordinate-
wise ordering following those bases. The ordering by cones 8, T*, 8*
and T can be different. However, in the economic considerations (but
less in this paper) the connections between those two orders in each space
are important. A reasonable assumption is, for instance, that T < *R™,
i.e. that possible prices are non-negative.

3. Von Neumann models: classification. A von Neumann model in
which 4, = A; = A and B, = B, = B is called simple and can be writ-
ten as

M = (R", 8, E™ T, A, B).

We refer to models which are not simple as to extended models.
A special kind of extended von Neumann models are three-matriz models
in which 4, = A, and B, # B, or A, #* A, and B, = B,. These two forms
of three-matrix models are mutually dual.

If the ordering cones 8 and T are closed, we call the model closed
(it should not be confused with models of closed economies); if they are
polyhedral, we call the model polyhedral. A polyhedral model is closed.
If 8 and T are non-negative orthants of the corresponding spaces, i.e.
8 = *R" and T = *R™, we call the model normal. An extended normal
model can be regarded as a four-tuple of matrices, and when it is also simple,
a8 a pair of matrices (4, B).

A model with all transformations monotone is called monotone.
A normal model is monotone iff all its matrices are non-negative.

We will gingle out classes of von Neumann models with one or more
of the following properties:

(KMT,) There exists a p=>0 with 4,p > 0.

(KMT,) There exists an >0 with B, > 0.

(&) For every z > 0 and p > 0 there exists a number { > 0 such that
{pA.p < zA,p and (xB,p < 2B.p.

(VN) For every # 2 0 and every p - 0 at least one of the quantities
24,p, vA,p, »B,p, vB,p is positive.

(BKXL) (for simple models only) For every # > 0 and 4 > 0, if 1z4 < 2B,
then #B > 0.

Let us notice that the vector inequalities, as used above, refer to
d'iffegent ordered spaces. Due to the convention that vectors in R", R™,
R", R™ are denoted by =, ¥, ¢, p, respectively, we can determine from the
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shape of letters and the character of transformations to which space the
inequality refers.

The properties (KMT) are dual, i.e. if a model has one of them, then:
the dual model has the other. The properties () and (vN) are self-dual.
The property (BKZXL) is not self-dual.

The first paper to investigate von Neumann models in ordered
spaces is probably %08 [17]. The assumptions on orderings have gradually
been weakened to achieve finally the form presented here, where S and T
are only assumed to be pointed but even not to be closed. A special form
of extended models was introduced in the paper Morgenstern and
Thompson [30]. The properties (KMT) have been introduced in the paper
Kemeny et al. [14]. Originally expressed for normal, monotone, simple
models they read: no row of A is zero and no column of B is zero. The
property (vN) for the same class of models (von Neumann [33]) reads
as follows: A + B has all entries positive.

4. Equilibria of von Neumann models: definition and properties.
For every von Neumann model I we define a two-person, non-zero-sum,
min-oriented game with strategies being semi-positive vectors x 2 0
and p 7 0 for the first and the second player, respectively, and the
pay-off functions defined as follows:

f(z,p) = 2A,p//vB,p for the player controlling x’s;

g(z, p) = B,p//zA,p for the player controlling p’s.

The function of two real variables -//- is defined as

a/[[p = sup{A|Af < a}
or, equivalently,
a/p iff >0,
allp =1 —o0 iff § =0 and a< 0,
+ oo  otherwise.

Since bgth pay-off functions are positively homogeneous of degree
zero (i.e. f(z, p) = f(lx, yp) for any {> 0 and y > 0) and both 8 and T’
are pointed cones, we can restrict the strategy sets to pre-compacts (i.e.
compact after closure) taking any ¢ > 0 and y > 0 and putting

={#=>0lsg =1} and P ={p>0yp =1}.

The game played with strategies restricted to @ and P is in all respects
equivalent to that played with « 2 0 and » 2 0.

Let us recall that, since both players are minimizing, the non-cooper-
ative (Nash’s) equilibrium of this game is a pair of strategies ZZ 0 and
P 70 such that

f flz,p) for all #0,
gz

p) <
( P)<g(z,p) foral p2o0.
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A non-cooperative equilibrium of the game defined above is called
a von Neumann equilibrium of the corresponding model or, for shortness,.
an equilibrium of the model. At the equilibrium Z and P, the values of the
pay-off functions f(Z, p) and ¢(%, p) can be finite or infinite. The first.
case is more important, but we cannot dispose completely of the second
one.

THEOREM 4A. A pair of vectors Z 7, 0 and P 3 0 18 an equilibrium with.
finite values iff there exist two numbers A and o such that

(4.1) AZA, < ZB,, (4.2) oB,p < AP,
(4.3) JZA,p = ZB,P, (4.4) 0ZB,P = ZA,P,
(4.5) ZA,p> 0, (4.6) ZB,p > 0.

(Then, of course, A = g(%, p) and o = f(Z, p).) If 1> 0 and ¢ > 0, then,
in economic terminology, A is the factor of growth and u = o~ is the factor-
of interest. The existence of those factors can be secured only in special.
cases.

THEOREM 4B. If the model has both the properties (KMT) and the
property (L), then all equilibria (if any) have finite, positive values and,.
consequently, 7, 0 and P 7, 0 is an equilibrium iff there ewist two positive
numbers 1> 0 and o > 0 such that (4.1)-(4.6) are satisfied.

The definition of an equilibrium for a normal, monotone model with.
the property (vN) has originally been given by von Neumann [33] as.
a minimax-maximin pair of strategies of a zero-sum game. The definition.
above follows that idea of von Neumann, but since it concerns more gener--
al models, it uses Nash’s equilibria in non-zero games. Theorems 4A and 4B-
can be found in X.o§ [20].

5. Equilibria of extended models: existence. The only known theorem:
on existence of equilibria for a comparatively large class of extended von
Neumann models is

THEOREM 5A. If a closed and monotone model has both the properties:
(EKMT) and the property (L), then there exist vectors T2 0 and D2 0 and:
two numbers A, o such that conditions (4.1)-(4.4) are satisfied. If, moreover,
the model has the property (VN), then, for every 7,0, D 7 0, 4, o for which-
(4.1)-(4.4) hold, (4.5) and (4.6) also hold and i > 0, ¢ > 0, thus the pair
Z and P is an equilibrium.

The proof uses Kakutani’s fixed-point theorem and goes very much.
along the lines of the von Neumann proof in his original paper [33]. Let.
us point out the necessity of the property (L); there exist monotone:
models with both the properties (KMT) and the property (vN) but deprived.
of equilibria.
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Theorem 5A is a very weak one indeed. Not only the assumption of
the property (vN) is restrictive. In most of interesting economic problems
the models are not monotone. There are non-monotone models, deprived
of all four properties assumed in Theorem 5A, which have a lot of equi-
libria with finite, even positive values (see Lo§ and X.0of [23]).

Theorem HA for three-matrix, normal models has been proved in
F0§ [18]. In Ballarini and Moeschlin [1] this proof has been generalized
to include some non-normal models. The proof for extended models with
four matrices and arbitrary (closed) orderings is contained in X.08 [20].

6. Equilibria of extended models: equilibrium levels. By the set of
equilibrium levels of a von Neumann model we understand the set of pairs
of positive numbers (4, ) such that for 4 and ¢ = u~! there exist vectors
Z70 and 77 0 satisfying (4.1)-(4.6). An equivalent definition states
that (4, u) is in the set of equilibrium levels if f(z, p) = A > 0 and ¢(Z, P)
= u~'> 0 for some equilibrium Z and 7.

The exact shape of the sets of equilibrium levels has not been known
yet but the following can be proved:

THEOREM 6A. The set of equilibrium levels of an extended von Neumann
model 18 a union of a finite number of open rectangles with sides parallel
1o the axzes which eventually can degeneraie into intervals and points.

It follows from this theorem that we have either a finite number
of equilibrium levels or continuum of them.

Theorem 6A has not been published yet.

7. Aggregations and extensions of von Neumann models. Let us
consider two von Neumann models

M = (R, 8, R™, T, A,, By, 4,, B))
and

M = (B, &', B*, T', A;, By, 4;, B)
and two monotone linear mappings (matrices of dimensions Ixn and
m X k)

-L: (R, 8)—>(R",8) and K-:(R*T)—>(E™T).
We have then two diagrams
(Rn’ S) -4,,"B),"A9," By >(Rm, T*)
A

L ‘K

"4, By Ay B,

A4
L - (R%, T

(', 8")
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(1) I (i, )

K- L

’ 4 4 ’
47,B}, 45,8,

(B, T") —

i 7
;(R‘, i)

By definition, if both diagrams commute, ie. A; = LA,K and
B; = LB,K for ¢ = 1,2, then (alternatively)

if -L: 8’8 is an injection (one-to-one into) and K-:T'—T is
an injection, then (L, K) is called an aggregation of M into P’, and M’ is
an aggregate of IM;

if -L:8—>8 and K-:T'—~ T are surjections (8L =8, KT' =T),
then (L, K) issaid to extend I to PM’, and M’ is called an extension of M.

It is easy to see that if 8 and T are solid (thus generating the whole
space), then k<m and 1< n imply the existence of an aggregation,
whereas n <1 and m < k imply the existence of an extension.

Let us suppose now that (L, K) is an aggregation of It into M’ and
that we have two additional linear monotone mappings

-L:(R",8)—~ (R, 8) and K-:(B™ T)-—(R"T).

1f -LL: R R' and -KK: R* -~ R* are both identities, then the
quadruple (L, L, K, K) is called an aggregaton. An aggregaton yields
the following diagram (the dual diagram is omitted):

(R“, S) *d},By," 4,"By > (Rm’ T‘)
4 A
EAND K| |'K
‘A"'B'.'A' ’.BI *
(R, 8)—— > % ,(R%T"™

Let M be some transformation from among A,, B,, 4,, B,. Then
we have (alternatively) '

(I) If LM’ = MK, then the aggregaton is called left-intrinsic for M.
() ¥ M'K = LM, then the aggregaton is called right-intrinsic
Jorg M.
(II) If M = LM'K, then the aggregaton is called perfect for M.
If the aggregaton is perfect for all four transformations (i.e. (L, K)
extends M’ to M), then it is called, simply, perfect, and M’ — a perfect
aggregate of M.

10 — Colloquium Mathematicum XL.2
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THEOREM TA. Each polyhedral model is a perfect aggregate of a normal
model. '

THEOREM TB. For a model MM in order to have an extension which is
a closed model it is mecessary and sufficient that both ordering cones 8 and T
are F, (unions of a countable number of closed sets).

TaEoREM 7C. Let (L, L, K, K) be an aggregaton of the model M into
the model M’. Then

(@) if =0 and p > 0 is an equilibrium of M at the levels (A, u), then
2 >0 and p’' > 0 18 an equilibrium of M’ at the same levels if one of the
following conditions holds: ' |

(i) 'L = » and Kp' = p, .

(ii) the aggregaton is left-intrinsic for A,, B, and 2’ = zL, Kp' = p,

(iii) the aggregaton is right-iniringic for Ay, By and »'L = x, p’ = Kp,

(iv) the aggregaton is left-intrinsic for A,, B, and right-intrinsic for
4y, By, and o' = aL, p’' = Kp;

(b) if ' =0 and p’' = 0 i3 an equilibrium of M’ ai the levels (A, u),
then @ > 0 and p = 0 is an equilibrium of M ai the same levels if one of the
SJollowing conditions holds:

(v) the aggregaion is right-intrinsic for A,, B; and left-intrinsic for
Ay, By, and 'L = », Kp' = p,

(vi) the aggregaton i8 perfect for A,, B, and left-intrinsic for A4, By,
and o' = oL, Kp' = p,

(vii) the aggregaton is right-intrinsic for A,, B, and perfect for Aq, B,,
and »'L =z, p’ = Kp,

(viii) the aggregaton is perfect for all transformations of the model and
»' = xL, p' = Kp.

It follows that if IR’ is a perfect aggregate of I, then for every (4, u)
the mapping

(L, K-): R* xRE™ — R' x R*

maps the set. of equilibria at the levels (4, ) of MM onto the set of equilibria
at the levels (4, u) of Y’ ‘

The aggregations of simple, normal and monotone models have been
studied by the author in a series of lectures given at the University in
Aarhus in 1967 (see Lo§ [16]). The presentation has been based mainly
on general ideas proposed by E. Malinvaud and A. Nataf. Since then some
authors familiar with notes of the Aarhus lectures have applied aggre-
gation to more general von Neumann models (e.g. Dang Quang [8], Le
quang Hung [15], Sosnowska [36]). Aggregations, the more extensions
of von Neumann models as presented in this section, have not been pub-
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lished yet. Theorem 7B is an easy consequence of the Bromek and Ka-
niewski theorem (see Section 1).

8. Quasi-equilibria of simple models. Since at the equilibrium of
a simple von Neumann model both equilibrium levels, if finite, are equal
and positive, then an equilibrium of such models can be defined as two

vectors > 0 and p > 0 for which there exists a positive number 1> 0
such that '

(8.1) JTA <ZB, (8.2) Bp<AiAPp, (8.3) =zBP>0.

If the model is polyhedral and 4 > 0, > 0 satisfy (8.1), then in order
to solve (8.2) and (8.3) with 7 > 0, so that Z and p become an equilibrium
at the level 4, it is necessary and sufficient that

(84) ZB< ®#(B—A14) has no solution x> 0.

If the model is not polyhedral, then (8.4) turns out to be a necessary
but not a sufficient condition to solve (8.2) and (8.3).

A vector Z > 0 for which, with the given 1 > 0, (8.1) and (8.4) hold
is called a quasi-equilibrium of the corresponding model. The number A,
which is unique for z, is called the level of that quasi-equilibrium.

Quasi-equilibria of polyhedral models can always be completed by
a price vector to become equilibria. This is, however, not true for non-
polyhedral models. It is easy to construct pure quasi-equilibria from equi-
libria of normal models by removing some faces of the non-negative orthant
on which equilibrium price vectors lie. By taking a closed extension we
obtain a closed model which has a pure quasi-equilibrium. There are
known examples of closed models with quasi-equilibria but without
equilibria which cannot be obtained in a similar way. The first example
of a von Neumann model (a cone model, indeed, see Section 16) with only
quasi-equilibria has been constructed in Movshovich [32]. Since then
many other examples have been published (see, for instance, Bromek et
al. [6], Section 14, p. 125-129).

9. The gross production' function and the levels of quasi-equilibria.
The multifunction @: *R ~~ T* defined as

G(A) = {y=>0|izA < xB >y for some x> 0}

is called the gross production fumction (g.p.f.) of the simple model -4, -B:
(R", 8) - (R™, T*). For every A > 0, the set G(1) is a face of the cone T*
(i.e. a sub-cone F such that if y € F, ¥’ € T* and y —y’ € T*, then y’ € F).
If the model has the property (BKZL), then its g.p.f. is non-increasing in
the sense that G(4,) = G(4,) for 1, < 1,. From this section up to Section 15
we shall consider only models having the property (BKZL.).



338 J. LOS

Let us call the character of the cone T* the maximal length r of a de-
scending chain of different faces of the cone T*:

T*=F03F13...§F,={0}.

The values of a g.p.f., when A increases, constitute a chain (which
cannot be a maximal one) and, therefore, a g.p.f. is constant everywhere
but in a finite number of points where it has jumps (down) and the number
of those jumps cannot exceed the character of T*.

At any point 2 where a g.p.f. has a jump either

(9.1) there exists a ¥ € G(1) such that
y#GA+) = JG(A+e), ie. GANG(AL) £0,

&>0

(9.2) there exists a y ¢ G(4) such that
ye@i—) =(\G(A—g), ie G(A-)\G(1) %9,

&8>0

or both.

THEOREM 9A. A sufficient and necessary condition for A > 0 to be a quasi-
equilibrium level 8 that, for the g.p.f. of the model, (9.1) holds at 2. All quasi-
equilibria x at the level A are such that B € G(A)\G(1+).

THEOREM 9B. If the model is polyhedral, then (9.2) ¢mplies (9.1) and,
therefore, every jump of the g.p.f. is a level of the equilibrium.

It follows from Theorem 9A that the number of quasi-equilibrium
levels is bounded from above by the character of the cone T*. Applying
Theorem 9A to the dual model we infer that the number of equilibrium
levels is also bounded by the character of the cone 8*. Since both charac-
ters do not surpass the dimensions of the spaces, then we have a rough
boundary for the number of equilibrium levels min(n, m).

Quasi-equilibria and the g.p.f.’s have been introduced in the paper
Bromek et al. [6], where the proofs of main results concerning those notions
can be found. Theorem 9B, in the form given here, is proved in Bromek [4].
Recently, Berezneva [2] has reported on results very similar to those
contained in this section. She investigates simple and normal models
which cannot be monotone and characterizes equilibrium levels of such
models very much along Theorem 9B. She uses also (independently) the
property (BKL).

10. Existence of equilibria and quasi-equilibria. The properties
(KMT,) and (KMT,) imply that for small but positive A’s the g.p.f. equals 7"
and for A’s large enough it equals {0}. Therefore, the g.p.f. of a model
having both properties (KMT) (and the property (BKZ%L)) has jumps and,
if the model is polyhedral, then all such jumps are equilibrium levels.
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However, if the model is not polyhedral, then some of these jumps can
be of type (9.2) but not of (9.1), thus they will not be even quasi-equilib-
rium levels. If the model is deprived of the property (KMT,), it can happen
(even if the model is closed) that no jumps are of type (9.1); thus the
model has no quasi-equilibria at all. This cannot happen if the model
is closed and has both properties (KMT).

THEOREM 10A. A closed model with both properties (KMT) has always
quast-equilibria, and one of them s the maximal factor of growth

i =inf{2]G(2) = {0}}.

The minimal factor of profit

~

A =sup{i|G(1) =T}

cannot be a level of quasi-equilibrium, but since -1 is the maximal factor
of growth of the dual model and the assumptions of Theorem 10A are
self-dual, 17! is a quasi-equilibrium level of the dual model provided the
dual model has the property (BKL).

TH:EOREM 10B. In a polyhedral model with both propemes (KMT),
both ) and 1 are levels of equilibria (it may happen that A= ).)

Since von Neumann [33] gave a proof of existence of an equilibrium
and since Kemeny et al. [14] generalized his definition and gave a proof
(Thompson [37]) of existence under milder and economically more mean-
ingful assumptions, many new proofs of the existence have been pub-
lished. An account of these researches can be found in the introductions
of papers Bromek et al. [6] and Y.0§ [20]. Recently, in Morgenstern and
Thompson [31] the paper by Kemeny [13] was published for the first
time. It contains a proof of existence of equilibrium different from the
others as applying perturbation arguments.

Let us mention here also the paper by Moeschlin [28] supplemented
by his book [29]. By applying a theorem of Mills on derivatives of the
value function »(1) = v(B—1A4) of the matrix game B— 14, he proves
indecd the following generalization of the existence theorem:

If the system of inequalities x(B—AiA)>v(l)e, (B—AA)p > v(A)f,
xBp > 0 has no solution in probability vectors x and p, then v(A) i8 constant
in a neighbourhood of A.

It follows that
sup{A|o(d) =0} = A and inf{A|v(i) =0} = 2,
1

if finite and positive, are equilibrium levels. (Here ¢ = (1,

f=@1,1,...,1))
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11. Equilibria and quasi-equilibria of Leontief meodels. A simple,
monotone model with (R", 8*) = (R™, T*) and I being the identity trans-
formation, thus of the form

‘4, -I: (R, 8) - (RB", 8),

is called a Leontief model. A Leontief model, indeed, reduces to one trans-
formation - 4: R" — R" which preserves a closed, pointed and solid cone S:
SA = 8. The Perron-Frobenius theory investigates such situation in
the normal case. No wonder therefore that the theory of quasi-equilibria
of Leontief models generalizes in some respect the Perron-Frobenius
theory.

THEOREM 11A. If Z> 0 48 an eigenvector with the eigenvalie yu > 0
of the transformation - A in a Leontief model, then Z is a quasi-equilibrium
of that model at the level A = u~'.

Obviously, not all quasi-equilibria of Leontief models are eigenvectors.
This happens only at the highest possible level, i.e. for the maximal growth
factor.

THEOREM 11B. If 1 is the maximal growth factor of a Leontief models
then every x> 0 satisfying AzA < » 18 an etgenvector with the eigenvalue
p=21l

At other quasi-equilibrium levels we can have quasi-equilibria which
are not eigenvectors but there is at least one which is.

THEOREM 110. If A > 0 i3 a quasi-equilibrium level of a Leontief model,
then u = A~' 48 an eigenvalue of - A associated with a mon-negative eigen-
vector.

The existence of an eigenvector in a convex, closed and pointed cone
for every transformation which maps this cone. into itself and which does
not take into zero any non-zero vector in that cone follows from Theorems
11A, 11B, 11C and 10A. However, it seems to be more interesting that
from Theorem 9A it follows that there exists a boundary on the number
of eigenvalues associated with vectors in a cone preserved by the linear
transformation, and that this boundary depends only on the shape of
the cone.

THEOREM 11D. If the character of a closed and pointed cone S in E"
48 1, then, for any linear transformation which maps 8 into itself, the number
of eigenvalues assoctated with eigenvectors in S is less than or equal to 7.

For proofs of these theorems see Bromek et al. [6]. Theorem 11B
for normal models has been proved in Gale [10].

12. Quasi-Leontief models. A model
-4, -B: (R*, 8) > (R™, T*)
is called quast-Leontief if
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(12.1) for every #' > 0 the equality #’A = 2’’B has a solution "’ > 0;
(12.2) for every p’ > 0 the equality Ap’ = Bp”’ has a solution p’’ > 0

We have also a special kind of quasi-Leontief models, i.e. almost-Leon-
ttef models, which are of the form

-A,-I: (R 8)— (R, T*

with - A preserving S and A - preserving 7.

Quasi-Leontief and even almost Leontief models cannot be mono-
tone. The results of the previous section can be extended to quasi-Leon-
tief models, with some restrictions, however, imposed on cones and/or
on transformations.

THEOREM 12A. If a quasi-Leontief model is polyhedral, has the prop-
erty (BKL) and T* is pointed, then, for any its ethbrwm z2=>0and =0
at the level A, there exists an & > O such that AwA = ZB, and = and P is an
equilibrium at the same level A.

T IEOREM 12B. If a quasi- Leontief model <8 monotone and T* is pointed,
then every vector T such that AZA = ZB # 0 for some A > 0 is a quast-equi-
librium at the level A.

THEOREM 12C. Every polyhedral quasi-Leontief model i3 an extension of
an almost Leontief model.

For proofs of these theorems see Sosnowska [36].

13. Stability of von Neumann medels. The problem is in showing how
the properties of a model change when entries of its matrices are perturbed.
A simple model is considered as a point in B?**™ and a norm in this space
is used to indicate how far a perturbation is from the perturbed model.

We consider a simple model with matrices (4, B), a subset C in R**™
to which (4, B) belongs and a feasible pair (#, 1), i.e. such that »> 0,
A> 0 and AzA < aB. We say that (4, B) is stable at (@, A) with respect
to C if for some s> 0 and f > 0 and every model (4, B) in C such that
(4, B)—(4, B)| < & there exists a pair (&, 1) with &> 0, 1>0 and
i%A < &B such that

max {|# — |, |4—Al} < fmin {lyl| (B — 14) +y > 0}.

THEOREM 13A. A normal and monotone model (A, B) with the property
(KMT,) s stable with respect to the non-negative orthant of R*"™ at a feasible
(z, A) if and only if every p 7 O such that Bp < AAp forms with » an equilib-
rium at the level A.

THEOREM 13B. A normal and monotone model (A, B) with the property
{(KMT,) is stable at every feasible (», A) with respect to the face C(A, B)
of the non-negative orthant of R*™™ on which (A, B) lies.
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Since C(4, B) = {(4,B)>0la; =0 implies G; =0 and by =0
implies b; = 0 for all ¢ and j} we see that, by restricting perturbations
to C(4, B), we can perturb only positive entries in 4 and B.

Let now A(A, B) denote the set of equilibrium levels of the normal
and monotone model (4, B). Since A (A4, B) is a finite set, it can be regarded

a8 a point in the metric space of compact subsets of real numbers with
the Hausdorff distance

dist (X, ¥) = max [supinf |» — y|, sup inf |y — 2|].
zeX yeX yeY zeX
By this definition, A(-, -) becomes a function from the space R*"™

to the metric space of compacts and, therefore, investigations of its con-
tinuity are meaningful.

THEOREM 13C. For every mormal and monotone model (4, B), the
function A(-, ) i8 continuous at (4, B) on C(A, B).
Theorem 13A is due to Robinson [35]. Theorems 13B and 13C are

due to Kaniewska, the first one is unpublished, the second one is contained
in [12]..

14. Other multifunctions connected with simple models. The net
production function (n.p.f.) is a multifunction N: *R~~>T defined as
follows:

N@A) ={y=>0|x(B—14) >y for some x> 0}.

The function of possible intensities (f.p.i.) is a multifunction I: * R~>-8
defined as follows:

I(A) = {#>0|0'A < »'B and » < o' for some ' > 0}.

Both n.p.f. and f.p.i. have properties similar to those of the g.p.f.
They are non-increasing and their values are faces of the corresponding
cones, of T for n.p.f. and of 8 for f.p.i. There are, however, some impor-
tant differences between the behaviour of those functions and of the
g.p.f., which are to be seen from the following theorems:

THEOREM 14A. Let the input transformation -A be monotone. Then

(a) N (1) = G(A) ¢ff 2 18 a level of quasi-equilibrium;

(b) f the model is polyhedral, then A i3 a level of equilibrium iff (9.2)
holds at A for N (instead of @), i.e. if N(4—)\N (1) # 9.

THEOREM 14B. If the oultput transformation -B ts monotone, then G( )
has jumps at those and only those points A where I(-) has jumps.

Let us note that it is easy to construct a normal model with the prop-
erties (BKX) and both (KMT) but with non-monotone ‘B such that,
at some A being a level of equilibrium, I(-) does not have a jump.
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These results have not been published yet. They are due mainly
to Hoang phong Oanh and Bromek.

15. Algorithm for finding equilibrium levels. A finite set Z < R is.
e-located if there are given a finite number of intervals of the total length
less than ¢ > 0, such that their union covers the set Z and in every interval
there lies at least one element of Z. There is a standard procedure to locate
jumps of any g.p.f., n.p.f. or f.p.i. provided we know how to compute the
values of that function or, at least, if we have an algorithm to decide if for
two numbers the function takes different values and if, moreover, we can
find two numbers 4, and A, such that the function has no jumps for 1 < 4,
and 1 > A,. If the latter is satisfied, we have a rough location with ¢ = 4,—4,
to start with. Going step by step we can refine every location by splitting
all intervals into two and rejecting those at the beginning and at the end
of which the function takes the same values. ]

Such an algorithm can obviously be constructed for normal models-
with the property (BKXL) using the g.p.f. and, by Theorem 9B, it will
locate all levels of equilibria of the model. In the case where, moreover, - A
is monotone, the n.p.f. can be used, and if - B is monotone, also the f.p.i..
can be used.

For normal and monotone models the algorithm using essentially
the £.p.i. was proposed by Thompson [38] and Morgenstern and Thompson
[31], it seems, however, that thc justification of the algorithm offered
by Thompson is not correct.

16. Production cones and von Neumann meodels. For a simple von
Neumann model

‘4, -B:(R" 8) > (B™, T*),
the production cone is defined as follows:
P(-A,-B) = {(v4d, xB)|x > 0}.

If the model is closed and has the property (KMT,), then P(-4, -B)
is a closed and pointed cone. If the model is monotone, then P(-A4, -B) <
c T* xT*, in particular for a normal and monotone model the production
cone lies in the non-negative orthant *R™ x *R™ of R™™.

In many problems concerning von Neumann models we can restrict
ourselves to consider only the production cone P = P(-A,‘B) < R*™
and the cone T in the space of prices B™. Doing so we get rid of the original
transformation model and we deal with the von Neumann cone model,.
called also the von Neumann - Gale model, since Gale [9], [11] has used
it extensively.

By a von Neumann cone model we mean a space (of price vectors) E™
ordered by a pointed cone T and a pointed cone P < R*™. An equilibrium.
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of a cone model at the level 4 > 0 is defined as a pair (%,, 7,) € P and a price
vector p € T such that

(16.1) A7, < #, (the inequality refers to TI7);
(16.2) for every (¥,, ¥s) € P we have 9,P < 4y,P;
{16.3) #,p> 0.

A representalion of the cone model is every transformation model
~4, B:(R", 8) - (R™, T*) such that P(-A, -B)= P. It can be shown that
-every cone model has many representations and one of them is the following.
As the intensity space we take R?™ ordered by the cone P, as the space
.of price vectors we take R™ ordered by T and we define -4, - B: (R*", P) —
— (B™, T*) as projections (¥,,¥s)A = v, and (¥;,¥s)B = y;. This trans-
-formation model is called standard for the original cone model. It is obvi-
.ously a representation and is a minimal one in the sense of the following

THEOREM 16A. Ewvery representation of a cone model is an extension
.of tts standard representation.

The cone model, although handy in several dynamic problems, loses
-one important economic aspect: it has no dual. With any transformation
model beside the production cone P(-A, -B) another production cone,
-this of the dual model, is related:

P =P(B-,A:) = {{Bp, 4p)|p > 0}.

This cone lies in the space £**, and R is ordered by 8, thus it produces
:another cone model. If, however, two models are the same cone models,
i.e. P(-4,-B) = P(-4, -B), then, in general, the production cones of
:their dual models P(B-, A-) and P(B-, A*) can be quite different. They
qusually lie in spaces of different dimensions.

Theorem 16A and more details about converting cone models into
“ransformation models are contained in the paper by Le quang Hung [15].
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