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Introduction. UC-sets were firstly defined by Figa-Talamanca [4}
on the one-dimensional torus and studied in detail by Pedemonte [8]
who extended this notion to general compact Abelian groups. For a study
of properties of UC-sets in the Abelian case we refer also to [3], [2] and [11]..

In this paper we attempt to extend the notion of UC-set to non-
Abelian compact groups. In Section 1 we give the definition and prove
some characterizations which generalize well-known results; as a con-
sequence of such characterizations we are able to show that any compact
group contains UC-sets in great profusion and that UC-sets and central
UC-sets coincide. In Section 2 we study UC-sets over SU,, giving a con-
cretec example and showing that the union problem has a negative answer
in the non-Abelian case.

1. Let @ be a compact group with a countable dual object G and let X,
be finite subsets of G such that

(1) X, = ﬂr
(2) X, cX,,, for al a,
(3) U X, =6.

n=0
If, for each o € é‘, f (o) is the unique operator on the finite-dimensional
Hilbert space H, such that

S8, > = [f@)<UD &, npdw  for all &, neH,

a
and

f~ Y dtr(f(e)U),
-

we put

8uf@) = D dtr(f(e) UL).

oeX,,
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Let F be a subset of é.

Definition. F is called a set of uniform convergence (UC-set) if, when-
ever f € Oz(G) (where Cx(@) is the space of continuous functions f on G

with f(a) = 0 for every o ¢ E),

“S»f—'f"u - 0.

Remark 1. Obviously, the definition of UO-set depends on the choice
of the sequence {X,}. It is clear that a Sidon set is a UC-set for every
choice of {X,}, since

Wafle < D dotr|£(0)] < 81l
o€ Xy

where & is the Sidon constant of Z (see Theorem 1 (ii) in the sequel).

Definition. We denote by BV (E, {X,}) the space of the functions
¢: E — C such that

@(0) = const = ¢, whenever c € X,\X,_,,

lellsy = 2 |'Pn+1“'l’n|+}im lp;l < oo.
—»00

n=1

When no confusion can arise, we will write BV for BV (E, {X,}).

It is easy to prove that the function |||z, is 2 norm and BV is a Ba-
nach space with this norm. We denote by BV, the closed subspace of BV
of all functions ¢ such that ¢; — 0.

Pedemonte [8] proves a characterization of UC-sets for compact Abe-
lian groups. Now we consider this problem when @ is not necessarily
Abelian and the following theorem improves Pedemonte’s result.

THEOREM 1. The following statements are equivalent:
(i) Z is a UC-set.
(ii) There exists a constant ¢ such that
18, flly < ¢lifly for all f e Cx(@) and for all n.

(iii) There exists a constant ¢ such that

sgp‘ 2 d,tr(p (o)) I < cllplly

oeX,

Jor all trigonometric polynomials p € Ty (@) and for all n.

(iv) There exists a constant ¢ such that, whenever ¢ € BV (B, {X,}),
we can find a measure u € M (@) such that

(4) p(o) =g@(e)I, for all ccE,
(5) el < cligllisy -
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(v) There exists a constant I such that, whenever ¢ € BV (EH, {X,}),
we can find & function g € L'(G) such that

g(o) = ¢@(0)1, for all c e H, gl < Ellgilgy -

(vi) There exist a constant k and a sequence {g,} = L'(G) such that

(6) gnlo) =1, whenever 0 e ENnX,,
(7 gn(c) =0  whenever ¢ € ENX,,
(8) gl <k for all m.

Proof. We will prove the theorem by establishing the following impli-
cations: (i) < (ii), (ii) = (iii) = (iv) = (v) = (vi) = (ii).
(i) = (ii) is obvious by the uniform boundedness principle.

(ii) = (i). For each ¢ > 0 there cxists a trigonometric polynomial p
such that |lpll, =1 and [[f*p—fll, < ¢. Then, if X, > supp(p), we have

18nf — flly < I8nf —F*Plly+ If 2 —fllu < (¢-+1)e.

(ii) = (iii) is obvious.
(iii) = (iv). For ¢ € BV let

T(p) = Zdatp(a)tr(j)(o)) for all p € T5(G).
ocG

For n sufficiently large we have X,, o supp(p), and so

Tp)=Dle; D dotr(p(o))

j=1 UEXj\ Xj_. 1

n—1
= Y (g—o) D dtr(p(0)+on Y dotr(p(o)).
anj

jﬂ 1 dexﬂ

Hence we have

IT(p)l < llq»llwsup| D datr (ﬁ(a))l< ¢lplay Pl
" oeX,

By the Hahn-Banach theorem, the linear functional T can be extended
to a linear functional on C(G), also denoted by T, where |T) < ¢lllgy-

By the Riesz representation theorem, there exists a measure » € M(Q)
such that

bl < clipllsy  and [ fdv = T(f) for all feC(@).
o
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If v e E, let {¢;} be an orthonormal base on H,. Then, by the ortho-
gonality relations (3 () = (U e, €,)),

G@)en ed= [<TD e, epdv = D p(a)d,tr((uf)" (o) = @(7) 8.
¢ oG

Hence ¥(7) = ¢(7)I,, and this shows that the measure ,u'with u(4)
= »(A™?) satisfies (4) and (5).
(iv) = (v). Without loss of gencrality, let ¢ € BV,, where |ip|zy = 1.
We construct a sequence of non-negative integers in the following way:
let n, = 0 and n;, > m,_, such that |p,| < (3)* for all # > n,. For every
function '
® (o p(o) if ceX, X, o
g7(0) = {0 elsewhere

there exists a measure g, which satisfies (4) and (5). Let

Np+1

Gy = Z 9541 — 955
J'=nk+l

then
ltesalls < ellp® gy = e(1@ny . |- 1@ay ] +8x) < e L3+ @]

Moreover, there exists b, € L'(G), where h;(0) = I, for o € X;,k\X,,k_ s
and |kl <2, and so

(Ppsr * firerrlls < 2¢[(3)57 + @]

By the Lecbesgue theorem, we have

ll
M

g hk * B € .L1 (G) a'nd "9"1 < Gc-
k=1
(v) = (vi) follows obviously from (v), where
1 ifoelX
(n) — n?
(o) {0 elsewhere.

(vi) = (ii). If ¢, satisfies (6)-(8), we have
18aflu = If*gally < klifly for all feOg(@).

The characterization above shows that there is no difference between
UC-sets and central UC-sets (i.e., the sets B @ such that 8nf —flly = O
whenever fe Cgz(G) is central). Actually, we have the following result:

THEOREM 2. E < @ is a UC-set tff |18af—flly =0 for every ceniral
Junction f e Cg(G).
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Proof. For every central trigonometric polynomial p € T (G) we put

T(p) = D d,p(0)tr(p (o).
oe@

It is easy to prove that |T'(p)| < clgligyllpll, (see Theorem 1). We
now usc the Hahn-Banach theorem and the fact that the dual of C*(@)
is M*(@), where C*(G) and M*(@) denote the centers of the algebras C(Q)
and M (@) with respect to convolution (see [7]). Therefrom we deduce that
there exists a central measure » such that

bl < eliplpy and [ fdv = T(f)
¢
for every central function f € Cx(@). Then

tr(3(2)) = D 9(0)d,tr(x)" (o) = dup(7).
0eG

The measure » is central and, therefore, »(z) = ¢p('é)I «; the agsertion
follows at once from Theorem 1 (iv).

Remark 2. By Theorem 2 every central Sidon set is a UC-set for
every choice of {X,}. Moreover, it is easy to prove that the converse
is true.

The next theorem shows that, unlike other kinds of lacunary sets,
UC-sets always exist in compact non-Abelian groups.

THEOREM 3. Let {X,} be any sequence of @ which satisfies (1)-(3).
Then every infinite sequence {a,} < G contains an infinite UC-set (with respect
to the sequence {X,}).

Proof. Without loss of generality, we suppose that g, e X,, for
all k, where X, < X c...c X, <...Let 0y, = 0y; there ex1stsacentral
tmgonometrlc polynomlal hy such that lk4)l; =1 and h 1(0) = c")I for

every o € @, where |ef) —1| < ;. We inductively select o, oy, -
{ak} and the trlgonometrlc polynomials hg, kg, .. hj, . in T (3) 80
that h, 1(03) = 0 for all k> k; and |hl, =1 and h,(o) =1, for all

o € G, where lc‘” 1| < d; /] (t=1,2,...,5). We prove that E = {on}

is a UC-set by estabhshmg (v1) of Theorem 1. For this purpose we consider
the functions

i
Py = h,—FZ(l—oU))d, Ko,
=1

We estimate

b
“g; (1= oy, ) Aoy, T,

and so |pyl, < 2

j
1<2d¢k,- —c(’)l flx,k (2)|dw <
=
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Letting g, (x) = p;(x) whenever My SN <My )y WO have

o) = {I, if oeBNX,,
9 =0 it s B\X,,

and the assertion follows from Theorem 1 (vi).

Remark 3. The definition of UC-set makes sense when the whole of @
is not a UQC-set with respect to the sequence {X,}. Suppose, e.g., that
@ is the Cantor group and X, is the subgroup of @ of all elements with
coordinates x; = 0 if j > n+41. Then @ is 2 UC-set with respect to {X,}.
However, if we order in any way the elements of é, SAY, Gpy Opy eoey Opy oes
and let X, = {0y, 0y, ..., 0,}, then, @ being Abelian, @ is not a UC-set.

It is not known whether a similar result holds true for general non-Abelian
compact groups (P 1170). However, this is the case for SU, (see [9]).
Remark 4. Pedemonte [8] proved that every Abelian group G contains
a UC-set which is not Sidon. We were not able to prove the analogous
result for the non-Abelian case (P 1171). However, we remark that a large
class of non-Abelian groups does not admit central Sidon sets (see [10]).

2. Throughout this section @ is the group SU,; we denote by o, the
class of the continuous irreducible unitary representations on SU, of di-
mension 21+1 for all non-negative half-integer 1 (see [5], p. 125), and
choose the sequence {X,} as follows:

X, =0, X,={0}, .., X,={o, Oyj2y + s o(n—-l)/?.}’ oo
In the Abelian case it is not known whether the union of two UC-sets
is a UC-set (1); for SU, we have a negative answer.
THEOREM 4. There exist two UC-sets whose union i8 not a UC-set.
The proof of this theorem uses the following lemma (see also [6]):
LEMMA. Let p be a positive integer and let E @ be a UC-set; then E
cannot contain infinitely many pairs o, oy,

Proof. We suppose that £ contains an infinite number of such pairs
Oy O +p aNd Without loss of generality we can assume that

D&t = D @k+1) < oo and kP < Ky,
i=1 i=1 N
We consider the trigonometric polynomials

m

P (@) = D (ki +1)7 [ (2) — s, ()]

=1

1)*As J. J. Fournier (Vancouver) has reeently shown, the answer is in general
- >
negative [Note of the editors].
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If x; is the general element of the maximal torus of SU,, then

sin(3pt) .
‘Em%)‘z (2k;+1)""cos (k;+3(p+1))t  if te(0,27n),
Pm(z) = m =1
2p > (2k;+1)™! if ¢ =0.
i=1

The sequence {p,,} converges uniformly on @ to a continuous function
fy808,p, = 8, fforn =1, 2, ... However, S, f cannot converge uniformly
to f, since

182, +1f — S, [l = (2% +1)" 2l = 1.

Proof of Theorem 4. Let {o;} be a sequence of @ and p a positive
integer. By Theorem 3, there exists a sequence of integers {k;} such that
both {o,} and {0, ,} are UC-sets; but by the previous lemma the set
E = {0},}V{04,+p} 1s not a UC-set.

We want now to construct an explicit example of a UC-set on SU,.
This example can be produced by a direct application of the arguments
used in the proof of Theorem 3. First of all we need a “nice” summability
kernel; we may consider the following one constructed by Clerc [1]:

< 2 +1
(o) = D) @i+1)8( 55 ) 1@,
=0
where
1—=t)® fo<ig1
(p"(t):{o if t>1 ’

Clerc proved that
[ 185141 (@)1de < €
¢

uniformly with respeet to ! when 6 > 1. Obviously,

2i41Y’ o
é‘gl_*_]('yi) _ l(l — T‘Zi-!-_l) Izi+l if ¢ < l’
0 if 1>1.
Suppose now that o;, 0;,, ..., 0;, have been chosen. Arguing as in
Theorem 3, we find the relation between I, and 1, i.e.,
20, +1 \*  (21,+1)2
1_(1_ ot )<( D7
80 that if the sequence [, satisfies

2,1 > 0k(21, +1)%,

then {o; } is a UO-get.
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