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1. Introduction. In this paper (!) a study is made of some Banach
spaces of compact operators on a Hilbert space. The main result is obtained
by using an abstract Lax-Milgram lemma to find the conjugate spaces
of the reflexive spaces. These include the C,-spaces (1 < p < oo) and the
other reflexive crossnorm spaces introduced by Schatten [5]. The Lax-
Milgram technique avoids the use of many properties of Hilbert space
which have been used in other methods.

Throughout the rest of the paper, H will denote a Hilbert space,
% (H) the set of bounded linear operators on H, and C the set of compact
operators in #Z(H). The usual operator norm for elements of #Z(H) will
be denoted by ||+||, while |T'| will be used for (T™T)"2

Properties of the trace of an operator and the trace class can be
found in [2] or [5]. In this paper the trace of an operator T' will be denoted
by tr T.

2. C,-spaces. In this section we define some normed linear spaces
of compact operators and prove some elementary properties.

Definition 2.1. A generalized operator norm o is a function from
the space of compact operators C to the extended real number system
satisfying:

(i) o(T)> 0 and o(T) =0 if and only if T = 0.

(ii) o(8+T) < o(8)+ o(T) for all §, TeC.

(iii) g(a) = |a|e(T) for all finite constants a.

In addition ¢ may satisfy the following:

(iv) o(T) < oo for all T of rank 1.

(v) o(T) = ||T| for all TeC.

The normed linear space C, will be the space consisting of all Te<C
such that ¢(T) < oo. A conjugate norm o' is defined on C in the following
way:

(1) The results in this paper are contained in the author’s doctoral dissertation
written under the direction of T. L. Hayden at the University of Kentucky.
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Definition 2.2. For each Se C, define
e'(8) = sup |tr 8T,
e(T)<1
where trST = oo if 8T does not belong to the trace class.

The following propositions are easily proved using elementary prop-
erties of the trace:

ProrosiTION 2.1. If O, is the set of operators S such that o' (8) < oo
then O, i3 a linear space.

PROPOSITION 2.2. If o satisfies property (iv), then o' is a norm.
The following gives a sufficient condition for C, to be complete:
THEOREM 2.1. Suppose o satisfies property (v). If

oo o0

o D) T.) < D e(T)

n=1 n=1
for every sequence {T,} contained in C such that D> o(T,) < oo, then C,
is complete. n=1
Proof. Suppose

(= ¢]

D e(T,) < oo

n=1

for a sequence {T,} contained in C. Since p satisfies property (v),

[o 0]

DTl < D e(Ty) < o0

n=1

and hence D' T, defines a compact operator.
n=1

Let {T,} be a sequence in C, such that o(T,—T,) - 0 as n, m — oo.
There is a subsequence {S,} < {T,} such that

[o o]

29(8n+1—8n) < oo,

n=0

where Sq = 0. Let U, = 8,,,—8,, then U, is compact and > o(U,) < o.
By hypothesis, o

oo

9(2” U.) < D o(Uy)

0 0

and thus > U, belongs to C,. For each integer N,
0

N

v
2 Ui =8y
i=o
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(ZU Sn+1)—9(2 i) < AQ(UJ

which goes to 0 as N — oo. Now, for each positive integer n,

9(2 Un—1Ta) < e(j Up—8p) +0(8n—T,)  for all m.
0 0

Both terms tend to 0 as », m — oo and thus 9(2 U,—T,) tends to 0

a8 » — oo. Since ZU is in O,, it follows that C, is complete.

COROLLARY 2.1. If 1L<p< oo, then C, is complete.
COROLLARY 2.2. If o' satisfies property (v) and
sup [tr8T| = sup tr|ST| for all SeC,,

e(T)<1 e(T)<1

then C, is complete.
Proof. Using a result of McCarthy’s (see [4], lemma 3.1), we have

|tr 3 TT,| < tr

ProrosiTioN 2.3. If o(T) = sup |tr8T|, then o' (T)< o(T) for
all TeC. ®<t

Proof. If o(7T) = oo, then nothing is required. Suppose o(7) < oo
and ¢'(8)<<1, then ST belongs to the trace class and |tr87T| < o(T).
Therefore o'’ (T) < o(T).

THEOREM 2.2. If o satisfies property (v), then every element in the
trace class belongs to C,. In particular, every element of finite rank belongs
to C, and hence o'’ i8 a norm.

Proof. Let 8 be an element in the trace class. Then, for any T'e« #(H),
[tr 8T| < ||T||tr|S|. Since o satisfies property (v), it follows that |trST|
< o(T) tr|8]| for all TeC,. Thus

sup [trS8T| < tr|8] < o
e(T)<1

and, therefore, S belongs to C,. The last part follows from proposition 2.2.

hmmflz TT,| < lim Z’tru'm

N-oo

3. Representations of linear functionals. The particular form of the
abstract Lax-Milgram lemma which is used below is the one stated and
proved by Hayden [3].

LeMMA 3.1 (Abstract Lax-Milgram). Suppose U and V are Banach
8paces, V is reflexive and that G is a bounded non-degenerate bilinear functional
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on UxV. Then a necessary and sufficient condition that every bounded
linear functional F on V have a unique representation of the form F(v)
= @G (u,v) for a fixed we U is that there exists an m >0 such that

sup |G(u,v)| = m|u|| for each ue U.
loli=1

We now apply this lemma to obtain the following representation
theorem : '

THEOREM 3.1. Suppose C, and C, are Banach spaces, o'’ is a norm
on C,, and C, is reflexive. Then, for each bounded linear functional F on C,,
there is a unique S in O, such that F(T) = tr 8T for all T in C,. Furthermore,
IFl = o' (8).

Proof. Define @ from C, x C, into the complex numbers by G (S, T')
= trST. Properties of the trace imply that G is bilinear and, from the
definition of o', we see that |G(S, T)| < o' (8)e(T).

Suppose G(S, T) = 0 for all S in O, and a fixed T¢ C,. Then trST = 0
for all § in C, which implies that o”(T) = 0. Since ¢’ i$ a norm, this
implies T = 0 and, therefore, G is non-degenerate.

Since

r

sup |G(8, T)| = o'(8),
e(T)<1
the theorem follows from the abstract Lax-Milgram lemma.

Using the results of McCarthy [4] that the O, spaces (L < p < o)
are uniformly convex and that § is in C, (1/p+1/¢ = 1) if and only if
ST belongs to the trace class for all T from C,,, we obtain his representation
theorem.

COROLLARY 3.1. If 1 < p < oo and F is a bounded linear functional
on C,, then there 18 a unique 8 in O, (1/p+1/q = 1) such that F(T) = tr 8T
for all TeC,. The norm of F is the qg-norm of S.

The results of Schatten [5] for reflexive crossnorm spaces also follow
from theorem 2.2. ‘

.COROLLARY 3.2. Suppose C, and C, are Banach spaces, C, i8 reflexive,
and that ¢ and o' are crossnorms. Then, for each bounded linear functional F
on C,, there is a unique S in C, so that F(T) = tr8T for all T in C, and
IFl = ¢’ (8). |

THEOREM 3.2. Suppose C, and C, are Banach spaces, C, s reflexive
and o'’ 18 a morm. Then o(T) = o'’ (T) for all TeC,.

Proof. If o(T) < oo, the Hahn-Banach theorem and theorem 3.1
imply that there is an 8 in C, such that ¢’'(8) =1 and o(T) = tr8T.
Therefore

o(T) = tr 8T < |tr8T| < sup |tr8T| = o"'(T).

(S)<1
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Combining this with proposition 2.3, it follows that o(T) = o' (T)
for all TeC,.

The abstract Lax-Milgram lemma can also be used to find linear
functionals on reflexive Banach function spaces (cf. [1]).
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