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1. Introduction. Let T = (t,,) be a non-negative regular matrix,
considered as a linear operator on C,(XN), the set of bounded real functions
on the positive integers N. Let C, be the bounded convergence field of T,
i.e., the set of f € C; (N) such that li;r‘n D) tunf(m) exists. A generalized almost-

convergence field with respect to T is defined as follows. A T-invariant
mean is a positive linear functional m on C,(XN) such that
(i) m(1) =1,

(ii) m(Tf) = m(f) (f € Cy(N)),

(iii) if F is a finite subset of N and 1 its indicator function, then
m(ly) = 0.

((iii) ensures that the Borel measure on 8N corresponding to m will
be supported by SN\ N.)

We say that f is almost-convergent with respect to I' and write f € ac,,
if m,(f) = m,(f) for any two T-invariant means m, and m,. If R is the
shift matrix Rf(n) = f(n4-1), then acp is the usunal space of almost-con-
vergent sequences.

In [10], p. 187, it was shown that acy is not equal to the convergence
field Cg of any regular matrix 8. It is natural to ask under what conditions
the equation ac,; = (g is possible. Is it ever possible? Yes. For instance,
if T° = T, then it is not hard to show that acy = C,. More generally,
if T is strongly ergodic, i.e., there exists a matrix projection @ such that

T.f=@1/n)I+ ... +T" ) >@Qf for all feCy(N),

then ac, = Cy. Thus some sort of ergodicity of T is sufficient for acy
= (g to hold. In this paper we show that if the matrix § is required to
satisfy certain hypotheses, then ergodicity is necessary as well. Assume §
and T are Markov operators on C(SN\N) induced by non-negative reg-
ular matrices (see Section 4). Assume 8 is “good” as defined in 2.6 below.
This paper is devoted to proving the following -
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MAIN THEOREM. If ac,, = Cg, then there exists a matrizc-induced Markov
projection Q on C(BN\N) such that |T,—@Q| — 0 (i.e. T is uniformly er-
godic).

1.1. Outline. In Section 2, we develop a relation between S and T
which will enable us to show later that T is “locally strongly ergodic”.
In a preliminary effort [5], the author was able to show that if S is assumed
to be a projection, then the relation between 8 and T holds, and local
ergodicity of T can be proved (see the remarks at the beginning of Sec-
tion 2). “Good operators”, as defined in 2.6, are sufficiently projection-like,
so that we can again prove local ergodicity of 7' by appealing to a more
general result of Sine [13]. In Section 3 we show that, for our particular
situation of operators on C(SN\N), local strong ergodicity implies not
only global strong ergodicity, but even uniform ergodicity. In Section 4
we prove the Main Theorem.

1.2, Notation. In Sections 2 and 3, X is an arbitrary compact space,
and 8, T are Markov operators on C(X), i.e., positive linear operators
with 71 = 81 = 1. By C(X)’' we denote the dual space of C(X), i.e., the
space of regular Borel measures on X, T' is the adjoint of T, and P is the
weak-* compact convex set of regular Borel probabilities on X. Let P,
= {m e P: T'm = m}. We note that, with the exception of Lemma 3.6,
all the results of Sections 2 and 3 are valid for this general situation. In
Section 4 we specialize to matrix-induced Markov operators with state
space X = BN\N.

2. The condition 8'P = P,. As we shall see in Section 4, the condi-
tion ac, = Cg for matrices translates into the condition 7', f — 0 iff 8f = 0.
Now this last condition implies easily 8'P < P,. (First, it implies ST = §,
because T, (Tf—f) — 0 for all f, whence S(Tf—f) = 0. Secondly, 8T = 8
iff 8P < P,, because 8T = 8 iff T'8’ = 8’ iff T"(8'm) = 8'm for all
m e P.) In [6], Lemma 2.2, it is shown that if §* = §, then 8'P = P,
and this relation is basic in deriving conclusions about the local ergodic
behavior of 7. In this section we seek to define a larger class of operators 8
for which this holds. More specifically, we wish to reverse the implications
of 2.2 below.

2.1. Definition. Fp = {m € C(X)": T'"m = m}.

Consider the following three conditions:

(i) S'P =Py,

(ii) T,f — 0 iff Sf =0,

(iii) Fr is the weak-* closure of §8'(C(X)’).

2.2. PROPOSITION. (i) = (ii) = (iii).

Proof. (i) = (ii). Suppose T,f — 0. Since, as noted above, (i) implies
8T = 8, we get 8f = 8T,f — 0, i.e., 8f = 0. Conversely, if 8f = 0, then
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0 = 8’ m(f) for all m € P, whence my(f) = 0 for all m, € P,. Now it is
well known that P, is the set of cluster points of functionals of the form
T, m, where m € P and T, is the adjoint on 7,. Hence it follows easily
that me(f) = 0 for all m, € P, iff T, ,f — 0 uniformly.

(ii) = (iii). Condition (ii) implies §8'P < P,, and hence S'(C(X)')
c F,. Suppose m € F,, is not in the closure of §’'(C(X)’). Then m(f) =1
for some fe 0(X) and 0 = 8’ my(f) = mo(8f) for all m, € C(X)'. Hence
8f = 0 and, by (ii), T,.f — 0, whence 0 = limm(T,f) = m(f) = 1, a con-
tradiction.

2.3. LEMMA. Let 8 be a Markov operator on C(X) such that S(C(X)*)
18 dense in S(C(X))*. Then 8'm =0 implies that there ewists my > 0 such
that 8'm = 8'm,.

Proof. Let 0 % 8'm>0. If fe8(C(X))*, there cxist g, € C(X)*
such that Sg, — f, whence

m(f) = limm(8g,) = lim8'm(g,) = 0.

Thus m restricted to clS(C(X )) is a positive linear functional. Let
n=m(1)"'m and let n, be a Hahn-Banach extension to C(X) of n restrict-
ed to cl§(C (X)) with norm 1. Since n4(1) = 1, n, is a probability measure,
and we must show that §'n, = 8'n (whence 8'm = §8'(m(1)n,)). But
n —n, vanishes on 8(C(X)), soif f € C(X), then

0 = (n—mno)(8f) = 8'n(f)— 8 n,(f).

2.4. COROLLARY. If 8 ts8 a closed ramge Markov operator such that

8(C(X)*) = 8(C(X))*, then the following are equivalent:
(i) 8'P = Py,

(i) T,f =0 iff Sf =0,

(iii) Fp = 8'(C(X)’).

Proof. Note that since § has closed range, 8’ has weak-* closed
range ([11], Theorem 4.14). By 2.2 we need only to prove that (iii)= (i).
Clearly, (iii) implies 8P < P,. Conversely, if m € P, then m = 8'n for
some n € C(X)'. Since m > 0, we infer froimn Lemma 2.3 that there exists
my = 0 such that m = 8'm,. To show m, € P, observe that m,(1) = my(S1)
= 8"me(1) =m(1) = 1.

2.5. Remarks. The condition in 2.4 is restrictive. Clearly, every
projection (Markov or not) satisfies it. On the other hand, suppose 8 is
a one-one Markov operator having this property. Then the inverse is
a Markov operator on §(C (X)), and hence 8 is an isometry. The following
definition gives a broad class of suitable operators. (A detailed discussion
of this condition and operators which satisfy it is given in [6].)
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2.6. Definition. Let S be a Markov operator, let s, (z € X) be the
Borel probability representing 8’4,, and put

K =K =cl|{supp(s,): v € X}.

Let A be the set of f e C(X) which is constant on supp(s,) whenever
8, is an extreme point of the compact convex set S'P.

S is called good if it has closed range and there exists a Markov pro-
jection @ on C(K) whose kernel is ker(8)gz = {f|K: f € ker(8)} and whose
range is Ay = {f|K:fe A}.

2.7. Examples. 1. A Markov projection is good, for if 8> = § and
8, is an extreme point in S’P, then 8f is constant on supp(s,) for each
feC(X)([14], Theorem 1.11). Now define @ on C(K) as follows: for f € C(K)
let f, be a continuous extension to X and let @f = (8f), K.

2. A generalized averaging operator [3] is good if its range is closed.
If we modify the definition of that paper so that the projection therein
called S has range in A instead of M,, we get a broader class of good
operators.

Further examples are given in [6].

2.8. PROPOSITION. Let S be a good Markov operator on C(X). Then

(i) If feC(K), then S((@f)o) = 8(fo), where f, and (Qf), are con-
tinuous extensions of f and Qf, respectively.

(ii) 8(C(X)*) = 8(C(X))*.

Proof. (i) Qf—f € ker(Q) = ker(8)g, so it follows easily that
(@f)o—fo € ker(8), whence the result.

(ii) Clearly, 8(C(X)*) = 8(C(X))*. Conversely, if 8f > 0, let f, = f| K.
Then 8f = 8((f1)o) = 8((Qf1)o)- If 8, = 8’4, is an extreme point of §'P,
then Qf, is some constant value k¥ on supp(s,). Then Sf(z) = S ((Qfl)o) ()
= [@Qf,ds, =k, so that Qf(y) = 8f(z) >0 for all y in supp(s,). Now
all extreme points of S’ P are of the form s, for some z € X ([5], Lem-
ma 2.3), and the Krein-Milman theorem implies that the union of these sup-
ports is dense in K. Hence @f, > 0 on K. Let ¢ be any non-negative con-
tinuous extension of Qf, to X. Then 8f = 8¢ with g > 0, so 8f € §(C(X)*).

It is a happy coincidence that good operators have another property
crucial to the Main Theorem.

2.9. PROPOSITION. Let S be a good Markov operator and let P, be the
weak-* compact convex set of regular Borel probabilities supported by K.
Then each extreme point of 8'P i3 an extreme point of Q' P,, where @ 1is
as in 2.6.

Proof. As noted before, extreme points of S'P take the form s,
= 8’4, where v € X. Now s, is an element of Q' P,; namely, if ¥ € supp (s,),
then @', = s, since @f(y) = s,(f) for all fe C(K), as shown in the proof of
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Proposition 2.8. If s, is not an extreme point in Q' P,, then s, = iQ'm, +
+(1—1)Q'my, where 0 <t <1, m, and m, are in P,, and s, is equal
neither to @’m, nor to @'m,. Since s, = @', whenever y € supp(s,), and
supp(Q'm,) < supp(s,), we have for all f in C(K)

Q'my(f) = (@'Y my(f) = (@ m1)(Qf)
= [ Qf)aQ'my(y) = [ 2,(f)dQ mi(3) = 5, ().

Hence Q'm, = s,, a contradiction.

3. Some operator theory. The condition S'’P = P, and Proposition 2.9
will enable us to prove later that the restriction of T to the set

M = M, = cl| {supp(m): m € P}

is strongly ergodic. We then use properties peculiar to Markov operators
induced by regular matrices to infer not only global strong ergodicity,
but even uniform ergodicity. In this section we develop these peculiar
properties.

3.1. Definition. A closed set K is called a P-set if the countable
intersection of neighborhoods of K is again a neighborhood of K. (P-sets
enter summapbility theory via the Henriksen-Isbell theorem: the “sup-
port set” in BN\ N of a regular matrix is a P-set; see [8] or [4].)

3.2. LEMMA. Let K be a P-set and {m,} a countable set of positive regular
Borel measures. Assume X is totally disconnected. Then there exists a clopen
set B o K such that m,(B) = m,(K) for all k.

Proof. Fix k. By regularity there exist open sets V, o K such that
m,(V,) < m,(K)+1/n. Since K is a P-set, there exists an open set V*
such that K < V¥ < V, for all m, and clearly m,(V*) = m,(K). Again,
there exists an open set V such that K <« V < V* for all k. Since X is
totally disconnected and K compact, we may assume V is clopen.

3.3. LEMMA. Let T be a Markov operator such that M = M, is a P-set.
Assume X is totally disconnected. Then (T") 6,(X\M) — 0 uniformly in
relX.

Proof. Write A = X\ M and (T")'6,(4A) = T"1,(»). Now for =
in M we have supp(I'é,) = M ([14], Theorem 1.3), so T'é,(M) = 1. Thus
1, <TlyorT1,<1,.For each z, T"1 ,(x) is decreasing with »n. To show
the limit is 0, let m be a weak-* cluster point of {7,d,:n =1,2,...},
so that m € P,. Since A4 is a “co-P-set”, Lemma 3.2 implies that there
exists a clopen set B < A such that T™1j(z) = T"1,(x) for all m.
Let {T,.d,:% €I} be a subnet with T, d, ->m (weak-*). Since 1p is
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in 0(X), we have
IimT*1,(#) =1imT"15(x) = m(B) =0

because supp(m) « M and B <« X\ M.

Suppose the convergence is not uniform. Then there exist ¢ > 0 and
@, such that T"1,(x,) > ¢ for all n. Let  be a cluster point of {r,}, and
{#,} a subnet with z,, —a. There exists a clopen set B = A with
T"1gz(w,) = T"1,(x,) for all » and k, and also T"1gz(w) = T"1,(x) for
all n. Bince d,,(;) — 0, (Weak-*) and 1z is in C(X), we have, for each fixed n,

Tn].A (w) = T"lB(m) = liannlB(wn(i)) = lianlA (w"“))
2_]}_.[}111"(1) 1A (wn(,)) > E.
1

But this contradicts the fact that ™1 ,(2) — 0. (This sort of result
is of some interest in ergodic theory — see, e.g., Theorem 1 of [9].)

3.4. Remark. Since M is an invariant set, T induces a Markov
operator on C(M). We say T is locally strongly ergodic if this induced op-
erator is strongly ergodic [13].

3.5. PROPOSITION. Assume X 8 totally disconnected. If T is a locally
strongly ergodic operator such that M is a P-set, then T is (globally) strongly
ergodic.

Proof. If f # 0 is in C(X), we must show that {T,f} is Cauchy in
the uniform norm. Let ¢ > 0. By Lemma 3.3 we can choose %k so that
(T*)' 8,(A) < &/(8]|f) for all  in X, where A = X\ M. Since T,(T*—1I)f
tends uniformly to 0 and 7, f|M is Cauchy in the uniform norm on C (M),
there exists N such that the inequality m, » > N implies

(1) IT,T*f — T fll < ¢/4,

(2) for all y in M, |T,f(y)—Tuf(y)l < e/4.

‘We have

WTof — T fll < NTpf — T T*fll + 1T T*f — T T* | + |1 Ty T*f — T
< e24+IT*(T, — T )l

To show | T*(T,—T,)fll < /2, we observe that for any # in X
ITH(Tof — Tuf) @) < [ITof(4) — Tuf 9)145@) + [ 1T0f — TSl 8}
74 4

< (e/4)tE (M) +2IfItE(4) < e/4+21If1 £/ (B1If) = /2,
where ¥ = (T*)'é,.
3.6. LEMMA. (i) If R, and R are matriz-induced operators on C(N\N),
and R, — R in the strong operator topology, then ||R,—R| — 0.
(ii) The space of matriz-induced operators on C(BN\N) is sequentially
complete in the sirong operator topology.
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Proof. For the proof of (i) see [12], p. 322, or [1], Lemma 2.3.

(ii) Let {R,} be Cauchy in the strong operator topology. We show
that this implies the sequence is Cauchy in the uniform topology. If {R,}
is not uniformly Cauchy, then there exist ¢ >0 and n(1) <n(2) <...
such that ||R,u — B4yl > & By (i), there exists f in C(BN\N) such
that ||R,uf— R.u+nfll - 0. But this contradicts the assumption that
{R,} is Cauchy in the strong operator topology. Since {R,} is uniformly
Cauchy, it converges uniformly to some R which, as can be easily seen,
is induced by some regular matrix.

4. Proof of the Main Theorem. First we must show how matrices
induce operators on C(BN\N). Let f' be the extension of f(f e C,(N)) to
BN, and let f* be the restriction of f’ to the compact set SN\N.If V < N,
then V' =¢lV in BN, and V* = V' AnBN\N. The set V* is not empty
iff V is infinite, and sets of the form V* (V < N) are a basis of clopen
sets for the topology of N* = SN\N.

C(N*), the space of continuous real functions of N*, is isometric to
the quotient space C,(N)/c,, where ¢, is the space of real functions on N
with limit 0. If T' = (4,,,) i8 a regular matrix, then 7'(¢,) < ¢,, and hence T
induces an operator T* on C(N*) by the formula T*f* = (Tf)* (f € C,(N)).
If T is non-negative, then 7 is a Markov operator, i.e., T* > 0and 7*1 = 1
(see [21-[4)).

If (Cp)* = {f*:feCp}, then (Cp)* = {fe€C(N*): Tf = const}. Like-
wise (acy)* = {f*:f e acp}. We regard the T-invariant means as a certain
compact convex set of regular Borel probabilities on N* which are invar-
iant under the adjoint of T*. Letting X = N*, we see that in Notation 1.2
this is just Pp.. If f is in ac, and the value assigned by each invariant
mean to f is k, then [f*dm = k for all m in Pj. (see [1]).

Since from now on we deal exclusively with the induced operator T,
we drop the notational distinction between T and T*, and just write 7.
Likewise we write C, = {f e C(N*): Tf = const} and feac, iff [fdm,
= [ fdm, for all m, and m, in P,. The following lemma enables us to apply
the results of Section 2 to matrix-induced operators.

4.1. LEMmA. If 8 and T are Markov operators on C(N*) induced by
non-negative reqular matrices, then acy = Cg iff {f: T,f -0 uniformly}
= ker(S).

Proof. The necessity is an easy exercise. To prove the sufficiency,
assume ac, = Cg. Suppose, for some f, T.f -0, but 8f = k +# 0. By [2],
Lemma 2.4, there exists g in ¢(N*) such that, for all & in C(N*), T,(gh)
=T,(9)T,(h) for all n, S(gh) = Sg8h, and Sg is non-constant. Then
T,(gf) - 0 while 8(gf) = k8g is non-constant. Thus fg € ac,\Cy, a con-
tradiction. Now suppose that 8f = 0 for some f, but T,f — k # 0. Let
h = k—f and apply the previous case.
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4.2. Proof of the Main Theorem. We assume ac, = Cg, where §
is good. By 4.1, 2.4, and 2.8, 8'P = P,. By 2.9 and the Krein-Milman
theorem, there exists a Markov projection @ on C(M) such that P, = §8' P
c Q' P, and each extreme point of P, is an extreme point of Q' P,. Now
Q is continuously scattered, i.e., there exists a family of continuous functions,
each constant on the support of each extreme @-invariant probability,
which separates the extreme invariant probabilities ([13], Theorem 3).
The operator induced by 7' on C(M) is also continuously scattered, and,
again by [13], Theorem 3, T' is locally strongly ergodic. Since 8'P = P,
the set

My = cl| {supp(m): m € Py} = cll {supp(8’d,): z € N*}

is a P-set (see [8] or [4]). By 3.5, T is strongly ergodic, i.e., T,, — R in the
strong operator topology. By Lemma 3.6 (ii), R is induced by a regular
matrix, and, by Lemma 3.6 (i), the convergence is in the uniform operator

topology.

5. Remarks. (a) Some readers may wonder what “constructive”
meaning is to be assigned to the uniform convergence of the induced
operators on C(N*). Suppose (a,,,) is an infinite matrix whese rows are
a bounded subset of I' and whose columns are null sequences. It defines
a bounded operator on C,(N) which maps ¢, into ¢,, and hence induces an
operator A on C(N*). It is easy to check that the norm of 4 is just

lim sup D la,,l
m—»o0 n
(b) There is not very much literature on generalized almost-conver-

gence. For a very general approach and many concrete results, see [7].

REFERENOCES

[1] R. Atalla, On the inclusion of a bounded convergence field in the space of clmost
convergent sequences, Glasgow Mathematical Journal 13 (1972), p. 82-90.

[2] — On the consistency theorem in matriz summability, Proceedings of the American
Mathematical Society 35 (1972), p. 416-422.

[8] — Generalized averaging operators and matriz swmmability, ibidem 38 (1973),
p. 372-378.

[4] — Regular matrices and P-sets in fN\N, ibidem 37 (1973), p. 157-162.

[6] — On the mean convergence of Markov operators, Proceedings of the Edinburgh
Mathematical Society 19 (1974), p. 205-209.

[6] — Generalized Markov projections and malriz summability, Canadian Mathemati-
cal Bulletin 22 (1979), p. 311-316.

[7] J. Duran, Almost convergence, summability and ergodicity, Canadian Journal of
Mathematics 26 (1974), p. 372-387.

[8] M. Henriksen and J. Isbell, Multiplicative summability methods and the Stone-
Cech compactification. II, Notices of the American Mathematical Society 11
(1964), p. 90-91. '



GENERALIZED ALMOST-CONVERGYNCE 111

[9] B. Jamison and R. Sine, Sample path convergence of stable Markov process,
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete 28 (1974),
p. 173-177.

[10] G. Lorentz, A coniribution to the theory of divergent sequences, Acta Mathematica
80 (1948), p. 167-190.

[11] W. Rudin, Functional analysts, New York 1973. A

[12] P. Schaeffer, Matrix transformations of almost convergent sequences, Mathemati-
sche Zeitschrift 112 (1969), p. 321-325.

[13] R. Sine, On local uniform mean convergence for Markov operators, Pacific Journal
of Mathematics 60 (1975), p. 247-252.

[14] — Geometric theory of a single Markov operator, ibidem 27 (1969), p. 155- 166.

DEPARTMENT OF MATHEMATICS
OHIO UNIVERSITY
ATHENS, OHIO

Regu par la Rédaction le 20. 4. 1979;
en verston modifiée le 2. 10. 1979



