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Introduction. A topological space X has the fixed point property if for
every continuous transformation f: X — X there exists a fixed point, i.e. a
point xe X such that x = f(x) (see [2] for an expository article). The
investigation of the fixed point property of continua of the lowest dimension,
called curves, can be restricted to those curves X which do not contain any
homeomorphic image of the unit circle, called a simple closed curve —
because such a simple closed curve would be a retract of X (see [9], vol. II,
p. 354, Theorem 1). X is arcwise connected if every pair of points of X can
be joined in X by a homeomorphic image of the unit segment of the real
line, called an arc. Then the condition that X does not contain any simple
closed curve is equivalent to saying that X contains a unique arc between an
arbitrary pair of points, i.e. that X is uniquely arcwise connected.

This property of a curve X does not characterize the fixed point
property of X as was shown by Young [20] (see also [17] for another
example). Thus the main task is to determine the class of these uniquely
arcwise connected curves which have the fixed point property. The most
important contribution to this problem is given by Hagopian [6] and
Mohler [15]. However, those two results seem not to give a general method
for studying uniquely arcwise connected curves.

The main theorem of the present paper, Theorem 2, is supposed to be
the first step for such a general study, formalizing the so called dead -end
method by [2] (p. 123-125). The proof of Theorem 2 is in its first part similar
to the proof of Zermelo—Hessenberg fixed point theorem [4] which is given e.g.
in [16]. This shows another connection between set theory and the fixed
point property of curves (see [13] for a relationship between Zermelo-
Hessenberg and Knaster—Tarski theorem, [8]). Theorem 2 is used here to prove
Theorem 3 and state a property of the class 4" of arcwise connected curves
having the fixed point property, namely that X, Y, X n Ye & do not imply
XuYeZ (see Corollary 4).

Theorem 1 plays an auxiliary role in the paper, but it gives a new
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characterization of a simple closed curve (Corollary 1) and seems to be
related to Problem 1.

The main Theorem 2 was inspired by an unpublished result of K.
Sieklucki, quoted here as Corollary 2. The author wishes to express his
gratitude to Professor K. Sieklucki for encouragement to elaborate this
general theorem in the paper. The paper has been written during the
author’s work at Seminar on Geometric Topology at the Warsaw University.

1. One-to-one continuous images of [0, cv). In this section we shall
consider metric spaces of the form P = ¢([0, oc)) where ¢ is one-to-one
transformation of the real half-line [0, c0). Then P will be called a ray and
¢ will be always assumed to be a one-to-one continuous transformation.

Lemma 1. A ray P = ¢([0, c)) contains a simple closed curve C if and

only if there exists ty € [0, oo) such that the closure ¢([t,, o)) in P is an arc.
In such a case C = ¢([to, )) for some to <t,.

Proof. Sufficiency. Let I denote the arc ¢([t;, o)) in P. Since
o([ry, ©)) is the union of a strongly increasing sequence of arcs
o([t), t,)) = I, where t, <t, <..., we infer that ¢([t,, o)) is a half-open
arc in I. Therefore ¢([t,, ©))—@([t;, ©)) = {@(10)} for some t, <. It
follows that two arcs ¢([to, t;]) and ¢([t,, o)) have only the end points
¢(to) and ¢(t;) in common. Hence the union ¢([to, t;]) U @([t;, ®)) is a
simple closed curve.

Necessity. Let C be a simple closed curve contained in P. It will be
shown that C = ¢([t,, ®)) for some t,€[0, o0).

Namely, if there were an unbounded sequence t, <t, <... such that
o(t)eP—-C for all n=1, 2, ..., then C would be contained in some arc
@([tn, ta+ 1)) by a theorem of Sierpinski (see [9], p. 173, Theorem 6). Thus
@([1, 20)) = C for some t€[0, o). This inclusion holds also for the infimum
to of all such ’s by the continuity of ¢, and then

(1-1) ‘P([fo, w)) < Ca
(1.2) o([s,10))—C # @ for each se[0, ty).

Suppose now, on the contrary, that ¢([te, o)) # C. Then by (1.1),
@([10, o)) is a half-open arc in C with the end point ¢(to). Let J denote
any other arc. of C having only the end point ¢(t,) in common with
@([to, o)), the other end point of J being ¢(s) for some s < t,. Then

(1.3) Jcc,
(14) J < o([0, t].

From (1.2) and (1.3) it follows that the arcs J and ¢([s, to]) are different
from each other and they have the same end points ¢(s) and ¢(t,). Therefore
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the union J U @([s, to]) contains a simple closed curve, contained in the arc
([0, t,)) in view of (1.4), which is impossible.

THEOREM 1. A ray P = ([0, o)) has the fixed point propefty for.
continuous transformations of P onto itself if and only if P is uniquely arcwise
connected.

Proof. Sufficiency. If P is uniquely arcwise connected, then P does not
contain any simple closed curve.

Then for every continuous transformation f: P — P and for every t > 0
there exists T > ¢ such that f(¢([0, t])) = ([0, 7))

Indeed, the continuum K = f(¢([0, ¢])) is a dendrite. Since, by Lemma

1, the closure ¢([n, o)) is not an arc for each n=1,2,..., we have
o([n, ©))—K # O (see [14], p. 125, Lemme 11; also the proof of Corollary
3 below). Thus there exists a sequence t, <t, < ... such that ¢(t,)¢ K for all
n=1,2,...and by a theorem of Sierpinski (see [9], p. 173, Theorem 6), K is
contained in some arc @ ([t,, t,+1]))-

If moreover f(P) = P (by assumption), then there exists ¢t > 0 such that
f(@@®) = ¢(0) and, as is proved above, the transformation f: [0, t] = [0, )
defined by the following formula

f) =0 (f(e@)) for all se[0, ]

is continuous. Of course, 0< f(0) and 0= f(1) <t by the choice of r.
Therefore, there exists a fixed point s, of f (e.g. by an argument using the
diagonal of the square [0,00) x[0, o0)). Then ¢(so) is a fixed point of f.
Necessity. If, on the contrary, P is not uniquely arcwise connected, i.e. if
P contains a simple closed curve C, then by Lemma 1, P = ¢([0, t,))uC
and Cne([0, ty)) = {@(ty)} for some t,e[0, ). Thus, there exists a
continuous transformation f of P onto itself which has no fixed point.

CoroLLARY 1. A ray P is a simple closed curve if and only if P does not
have the fixed point property for homeomorphisms (or one-to-one continuous
transformations) of P onto itself.

Remark 1. (a) In view of Lemma 1, Theorem 1 is a direct
generalization of Proposition 1 of [19]. But also, conversely, that proposition
can be used instead of Sierpinski’s theorem to prove the sufficiency in
Theorem 1. _

(b) As was observed by Mark Marsh, the “onto” in Theorem 1 cannot
be omitted for the rays which are not homeomorphic to [0, co). Namely, let
¢: [0, 0) — S' xS! be defined as ¢ (1) = (2™, e*¥2™) and let P = ¢ ([0, «)).
Then the transformation f: P — P given by the formula f (p, q) = (p, e2*2"q)
is continuous and has no fixed point.

(c) From Bellamy’s example [1], we can derive a planar ray which is not
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homeomorphic to [0, o) and does not have the fixed point property (for
continuous transformations into).

(d) Lemma 1 and Theorem 1 make use of some ideas of [7] and [10].
I would like to thank the referee for this information.

ProBLEM 1 (cf. [12], p. 434-435). Has the rational composant (with the
end point) of the simplest Knaster indecomposable continuum the fixed point
property? (P 1296)

2. Uniquely arcwise connected continua. In this section, X will always
denote an arbitrary uniquely arcwise connected metric continuum. Then the
common part of any arcwise connected subcontinua of X is an arcwise
connected subcontinuum of X. For every two arcwise connected subcontinua
K, Lc X such that Kn L= @ there exists the smallest arc joining these
continua in X, i.e. a unique arc [x, y] = X such that K n[x, y] = {x} and
[x, y]n L = {y}. It follows that [x, yJUu[y,z] = X is an arc [x,z] = X if
and only if [x, y]n [y, z] = {y}. Moreover, this condition is equivalent to
each of the following: [x, y] =[x, z] or ye[x, z].

For an arbitrary point xo€ X, a partial order < is determined in X by
the following formula

x<y iff [x0,x]<[x0,y]

and, moreover, if x # y, then we write x < y.

For every ray Pc X, where P = ¢([0, c0)) with a one-to-one
continuous function ¢, let x,=¢(n) and P(x,) = ¢([n, ©)) for each
n=1.2....,ie.

P(x,) = {xeP: x, < x}.

Then the closures P(x,) in X form a decreasing sequence of non-empty
(- o]

continua, and hence the set L(P) = () P(x,) is a non-empty continuum in

n=1
X. Equivalently, L(P) is the set of all limit points of P by [3]. If Q(x,) denote

the arc component of X —{x,} which contains P(x,)—{x,} and if () Q(x,)
n=1

= L(P), then P will be said to have small branches. P will be said to—have no
branches if there exists ny such that Q(x,) u {x,} = P(x,) for all n > n,.

LFMMA 2. A ray P in a uniquely arcwise connected continuum X has the
continuum L(P) consisting of one point if and only if P is contained in an arc
in X.

Proof. If L(P) consists of one point y,eX, then P =Py {y,}.
Suppose, on the contrary, that y,e P and take xe P such that y,¢ P(x).
Then, of course being L(P(x)) = {y,}, P(x) " P =P(x)uU {yo} is an arc. It
follows by Lemma 1 that P contains a simple closed curve, contradicting the
assumption on X.
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THEOREM 2. Let f: X — X be a continuous transformation of a uniquely
arcwise connected continuum X and choose x,e€ X to define the order < in X.
If xo # f(xo), then there exists a unique ray P — X with the initial point x,
which is maximal with respect to

2.1 x< f(x) for all xeP.

Then L(P) < f(L(P)), and the converse inclusion holds too (for L(P) non-
degenerated to one point) if P has small branches.

Proof. Consider the family 2, of all rays P, =[x,, X,) in X, ae.¢,
which satisfy condition (2.1) with P, instead of P.

The family #, is monotone, ie. for each P,, P,e%,, P,< P, or
P, = P,. To see this, it is sufficient to observe that for every P,e #, the
condition (2.1) implies that for every xe P there exists x’e P, such that x < x’
and that the arc [x, x'] is contained in the set [x, x,] N [x, f(x)] which itself
is an arc with one end point x (by the uniquely arcwise connectedness of X),
so that [x, x,] n[x, f(x)] is an arc non-degenerated to the point x; then it
will be written [x, x,]—< [x, f(x)] (cf. [11]).

Thus it is to be proved that (2.1) implies

(2.2) [x, y] —<[x,f(x)] for each x, ye P with x < y.

Indeed, let x, ye P and x < y. By (2.1), f(x)¢[xo, x] and hence by the
continuity of f there exists x'e X such that

x<x' <y

and f([x, x]) n[xe, xX] = @. Consider the smallest arc i/ joining in X
these disjoint arcwise connected continua. This arc I is contained in [x, f(x)]
and if, on the contrary, [x, y] n[x, f(x)] = {x}, then I =[x, z] for some
ze f([x, x']) so that [xo, xXTN[x, z] = {x}. Then

x'¢ [x09 x] v [xa Z] v [Z’f(x,)]

and since this union of arcs contains the arc [x,, f(x)], it follows that
x"¢[xq, f(x)] contradicting (2.1).

The family 2, is non-empty. Since x, # f(x,) by assumption, hence, by
the continuity of f, there exists an arc [xq, x;] = [Xq, f(xo)] such that

(23) [x0$ xl] ﬁf([xo, xl]) = 0.

In the arc [x,, f(x,)] take a subarc [x,, y,] joining [xo, x;] and f([xe, X;])
so that

(24) [xo, x, 1N [xy, y11=1{x,} and [x;, y;1n f([x0, x1]) = {y1}.

It will be now proved that [x,, x;)e 2,.
Let xe[xo, x;). Then [y,f(x)] < f([xo, x;]), hence, by (24),



232 R. MANKA

[xla yl] a [yl’f(x)] = {yl}, and therefore [xb yl] U Ulsf(x)] = [xlaf(x)]'
Hence [xo, x;1Nn[xy, f(x)]={x;} by (23) and (24), ie. [xo, x,]
U [x1, f(%)] = [Xo, f (x)]. Consequently, xe[xo,f(x)), ie. x < f(x).

The union P of the family P, is a ray. If there exists [x,, x,)€ #, which
contains all other elements of the family #,, then P =[x,, x,). In the

opposite case, let P = | [xo, X,) = U [xo, X,]- Since P is the union of the
aesf aedS
monotone family of arcs [x,, x.], which are closed subsets of X, and this

family can be considered as well ordered (taking possibly a cofinal subfamily
with the same union P), it follows that it is countable (see [9], vol. I, p. 258,
Theorem 3). Thus there exists an increasing sequence of arcs [x,, Xa,]15

n=1,2,..., such that () [xo,x, ]=P. Then P is a one-to-one
n=1
continuous image of the half-line [0, o0).
Inclusion L(P) < f(L(P)).
Case 1. If P is contained in an arc, then P = [x,, y,] for some yoe X
and L(P) = {yo}. It is to be proved that y, = f(y,).

Suppose, on the contrary, that

(2.5) Yo # f (¥o)

and take a sequence of points x,e P such that limx, = y,. By the conti-

nuity of f, there exists no such that [x,, yo1 N f ([Xay, ¥o]) = @. Then for

each n 2= ngy, [x,,f(x)] —< [xa, f(yo)] (namely the smallest arc between
[Xag> Yol and f([xay, ¥o)) is contained in the common part of the arcs

[xm f(xn)] and [xns f(}’o)]) Simultaneously, by (22)1 [xns yO] —< [xmf(xn)]s
and hence [x,, yo] —< [x,, f (¥o)] by the transitivity of the relation —<. But

[Xo0, xa] = [X0, ¥ol, and thus [xo, x,] = [xo, f(yo)] for all n > n, (see [11], p.
108, Proposition 6). Consequently, [xq, yol = U [Xo0, Xa] = [x0,f (o)), i-€.

. r=ro
Yo < f(yo)- Hence, in view of (2.5), yo < f(yo), i€. [xo, Yol & [*0. S (¥o)]-

Now, it is seen that this contradicts the maximality of P =[x, y,)
in .%,.

Indeed, as in the proof that the family #, is non -empty, there exists an
arc [yo, 11 = o, f(yo)] such that y < f(y) for all ye[yo, y,). But
[xo0- Vo) € [X0..y1) — a contradiction.

Case 2. If P is not contained in any arc, then, by Lemma 2, P(x) is not
contained in any arc for every xeP. Thus, by (2.2), there exists a point
x*e P(x)—{x} such that P(x)n[x,f(x)] =[x, x*]. It will be now proved
that

(2.6) P(x* < f(P(x).
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Take an arbitrary ze P(x*). Then
2.7) ze[x*, f(2)] = [f (x), f(2)]

the first relation being trivial, for z < f(z). For the second, observe first that
the following inclusion holds:

[x*, z] = [f (%), z].

This inclusion holds of course in the case where x* = f(x), and, in the
opposite case, f(x)¢[x, z]. Take the smallest arc joining f(x) and [x, z] in
X, which is of the form [f(x), x*]. Then [f(x), x*] = [f(x),z], whence
x*e[f(x), 2], ie. [x*, z] = [f(x), z].

Adding the arc [z, f(z)] to both sides of the inclusion, one gets
[x*,.f@] = [x*,z2]ulz, f@] = [f (%), zZ] Uz, f(2)]. But [f(x),z]u[z,f(z)]
= [f(x), f(z)] because ze[x*, f(z)], which proves (2.7).

Since [ f(x), f(z)] = f([x, z]), (2.7) implies (2.6).

The required inclusion for the continuum L(P)= () P(x,) follows
n=1

easily, by applying (2.6) to x, and x¥ in place of x and x*:

(28) N

n=1

[« o]

PG < N T(PGx),

and, by the continuity of f,

(2.9)

18

TP = N f(PGd) = £( A Plx).

Finally, if P has small branches, then f(P(x,)) = Q(x,), where Q(x,) is
the arcwise component of X —{x,} which contains P(x,). Since L(P)
= () Q(x,), hence, in view of (2.9), L(P) = f(L(P)) which completes the

n=1
proof.

CoROLLARY 2. Let X be a uniquely arcwise connected continuum and let
Xxo€ X define the order < in X.

(@) If f: X5 X is continuous and has no fixed point, then there exists a
unique ray P — X with the initial point x, which is not contained in any arc
and x < f(x) for all xeP.

(b) If every ray P — X with the initial point x, has no branches and L(P)
has the fixed point property, then X has the fixed point property.

CoroLLARY 3 (cf. [13]). If X is a uniquely arcwise connected continuum
such that every ray of X is contained in an arc, then X has the fixed point
property; in particular, every dendroid has the fixed point property.

Proof. A continuum X is a dendroid if X is arcwise connected and
hereditarily unicoherent, ie. if for every two points x, ye X there exists a
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unique continuum irreducible between x and y and this irreducible
continuum is an arc [x, y].
Every ray P in X is the union of increasing sequence of arcs: P

G a
= {J [xo, x,). If a proper subcontinuum of the continuum {J [xo, X,]
n=1 n=1

contains x,. then there exists x, which does not belong to this

a0
subcontinuum. Hence the continuum (J [x,, x,] cannot be decomposed
n=1

into a union of two proper subcontinua which both contain x,, and thus
U [x0, x,] is an arc (see [9], vol. II, p. 192, Theorem 4).
n=1 )

Remark 2. (a) Theorem 2 is true, by the same proof, for Hausdorff
continua, understanding that a ray is any union of monotone family of arcs
with the same end point.

(b) The inclusion in Theorem 2 may be essential as the example
constructed in [17] shows.

3. On the class of uniquely arcwise connected curves with the fixed point
property. If X and Y are uniquely arcwise connected curves with the fixed
point property and X nY has the fixed point property, then X U Y need not
have the fixed point property (cf. [19], p. 156, Example 3). The necessary
condition for X UY to have the fixed point property is of course the
arcwise connectedness of X N Y, because otherwise X U Y would contain a
simple closed curve. However, this condition is not sufficient — it will be
proved in this section that even if X N Y has the fixed point property and is
arcwise connected, then X U Y may not have the fixed point property.

The proof of this fact will be provided by a suitable construction of
curves X,; and Y;. The curve X, will consist of Young’s uniquely arcwise
connected curve X, and a convergent sequence of arcs having only one end
point common with X,.

To describe X,, and then prove the fixed point property of X,, recall
Young’s example [20] introducing necessary notation. Young’s curve lies
essentially in 3 - dimensional Euclidean space E3, but it will be here described
with only one arc lying out of the Euclidean plane E2. Thus take a cycle

: ) .1
C c E? which is the union of two curves homeomorphic to the sin—

. 1 : .
curve so that the end point of one sm; curve is an end point of the

segment of condensation of the other. The segments of condensation place on
a straight line and the end points of the segments, which are simultaneously

1
end points of the sin; curves, denoted by a and b. Moreover, let C be
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symmetric with the center ¢ of the symmetry y, lying on the straight segment

[a, b]. The continuum C described in such a way is the union of rays 4 and
B, which are arc components of C:

3.1) C=AuB and AnB= 0,

where 4 and B have initial points a and b respectively. Let S « E2—C be a
spiral approximating C in the unbounded domain of E2—C and let s be the
initial point of S. Take an arbitrary arc S, < E* having as its end points only
c and s in E? and straight-line segments 4, = [a, ¢] and B, = [b, c¢]. Then
define

X0=AOUB()USOUSUC,

the Young’s uniquely arcwise connected curve (which does not have the fixed

point property).
Observe that

(3.2) A—Ais an arc in B and B—B is an arc in 4

and take a point a*e A—(B—B). The point a* separates A into two
connected subsets: the arc [a, a*] and the ray A* with the initial point a*:

3.3) A—A* =[a,a*]c A and A*c A.

The continuum X; will be now defined as follows:
X, = Xou ..le 4,
where A, = [b,, ¢,] < E* and A, X, = {b,} for each n=1, 2, ... and
(3.4) b,eB, and limA, = A*.

Such a sequence of arcs A, can be easily constructed taking into acount that
the bounded domain of E2—C is the union of a strongly increasing sequence
of disks so that the boundaries of these disks lead to the desired arcs A4,.

Though the closure in (3.2)-(3.4) was considered with respect to plane
topology, it concerns the subsets of the continuum X,, and thus it may be
further considered as the closure in X,.

THEOREM 3. The curve X, has the fixed point property.

Proof. Suppose, on the contrary, that there exists a continuous
transformation f: X, — X, without any fixed point. Take ce X, as the initial
point for the order in X,, so that every ray in X, has not branches. Then by
Theorem 2 there exists a ray P c X, such that L(P) = f(L(P)). Since Sou S
= P is the only ray with the continuum L(P) without the fixed point
property, and L(P) = C, hence, in view of (3.1), Au B = f(A u B). It follows,
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in view of Theorem 1, that f(B) = A and

(3.5) f(A) =B.
Moreover

(3.6) f(A—A)=B-B.

Indeed, f(A—A)nB = @ by (3.1) and (3.2), and f(A—A) = B by the
continuity of f. Hence f(A4— A) = B— B. The converse inclusion follows from

(5] ((3), p- 28).
Denote now for every n=1, 2, ...

Co= U Ay u by, by 1],

k=n

so that every C, is an arcwise connected set and, by (3.4),

(3.7) imC, = 4*.
It will be now proved that
(3.8) f(C)c X—{c} for some n.

If, on the contrary, ce f (A, U [by,, bs +1]) for some sequence n, <n,
<...,ie c= f(x,) where x, v 4, U[b,, by +;]for k=1,2,..., then for a
convergent subsequence limx, €4 by (3.3) and (34). Thus cef(4)

contradicting (3.5) and (3.6), which proves (3.8).

It follows from (3.8), in view of (3.2), (3.5) and (3.6), that f(C,u(A— A))
is contained in the same arc component of the set X—{c}. But B
—Bc f(C,u(A—A)) by (3.6) and B—B = A by (3.2). Consequently

f(Cn) = A (& AOa
and hence f(C,) c AguAu(A—A) by (3.3) and (3.7). Thus f(A*) = A—A4
in view of (3.1), (3.3), (3.5) and (3.7). Since A— A is an arc in B by (3.2) and

also f(A—A*) is a compact subset of B by (3.2), (3.3) and (3.5), it follows
that f(4) is contained in some arc of B, contradicting (3.5).
This proves Theorem 3.

Since the continua

Y, =AouBouBUl/1c(G A,)
n=1

and X,NnY, =A,uB,UB have the fixed point property in view of
Corollary 2(b), and, similarly to the Young’s continuum X,, X, U Y, does
not have the fixed point property, we have the following

CoRrOLLARY 4. There exist uniquely arcwise connected curves X, Y and
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X n'Y which have the fixed point property, but the curve X U Y does not have
the fixed point property.
The following problem arises to generalize [18]:

ProBLEM 2. Suppose X and Y are uniquely arcwise connected curves
with the fixed point property and X n Y is a dendroid. Must X u Y have the
fixed point property? (P 1297)

Finally, observe how Theorem 2 can be used to prove the fixed point
property of Bing’s uniquely arcwise connected curve X,, which can be
defined in our denotation as follows. Let S¥ = [a*, s] = E® be an arbitrary
arc having only the end points on the plane E2 Then X,
=AguByuS§uSUC.

Applying Theorem 2 to X = X, and x, = a*, the inequality a* # f(a*)
implies a* < f(a*) and f(a*)eC which is impossible. Thus we obtain

CoroLLARY 5 (cf. [2], p. 124, Theorem 14). Bing’s uniquely arcwise
connected curve X, has the fixed point property.
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