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0. Introduction. Let (M, g) be an n-dimensional compact Kaehler mani-
fold and let 4 be the Laplacian of (M, g). Using a local complex coordinate
system (x,, ..., X,), We express 4 as

0.1 4=-23F gUAex)@dx),

ij=1
where (g”) is the inverse matrix of g = (g5 We denote by 4, (M) the first
eigenvalue of 4 of M. Then the following result is known:

THEOREM A ([6]). Let M be an n-dimensional compact Einstein Kaehler

manifold of positive scalar curvature t. Then

Ay (M) = t/n.
The equality holds if and only if M admits a one-parameter group of isometries
(i.e, a non-trivial Killing vector field).

Theorem A can be proved by using a Bochner type identity. Then, using
the same method, we can show the following

THEOREM 1. Let M be an n-dimensional compact Kaehler manifold As-
sume that the Ricci curvature Ricci of M satisfies

Ricci 2 k (> 0).
Then
0.2) A (M) = 2k.

If the equality holds, then M admits a non-trivial Killing vector field.

Remark 1. Urakawa [10] also proved Theorem 1 by using a different
method.
In Theorem 1, if 4, (M) = 2k, then the Ricci tensor Ric of M satisfies

0.3) Ric(x, x) = kg(x, x) for some non-trivial vector field X.
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We put Ric, = Ric—kg. Then we consider the nullity distribution
D ={XeT,M | Ricy(X, Y) =0 for all YeT, M}

at peM. The set M, where dim D attains its minimum is an open subset of
M. The problem is whether the subbundle of Dl of the tangent bundle is

integrable or not. We do not know whether it is integrable or not. However,
Ferus’ general result [2] states that the condition for D|y, to be integrable is

that the Ricci tensor is of Codazzi type, which implies that M has the
parallel Ricci tensor since M is a Kaehler manifold. On the other hand, we
have the following

THEOREM 2. Let M be an n-dimensional compact simply-connected Kaeh-
ler manifold with parallel Ricci tensor. Assume that there is a non-trivial Killing
vector field on M. Then

(0.4) i (M) < (n+1)H,

where H is the maximum of holomorphic sectional curvature of M. Moreover,
the equality holds if and only if M is complex-analytically isometric to a
complex projective space of constant holomorphic sectional curvature H.

Remark 2. By Kobayashi’s Theorem [4], a compact Kaehler manifold
of positive Ricci tensor is simply connected. In Theorem 2, if M is irreduc-
ible, then 4, (M) =1/n (> 0).

Next, we investigate the sufficient conditions for M to be a complex
projective space. Recently, Kameda and Yamaguchi [3] showed the following

THEOREM B. Let M be an n-dimensional compact Kaehler manifold. As-
sume that there is a non-constant function f such that Af = Af for some real
constant A and that f has the property

2Ric(grad (f), grad (f)) = Ag (grad (), grad (f)),
where grad(f) is the gradient of f. Then
0.5) 2> 4(n+1)k,,

where k, is the minimum of sectional curvature of M. Moreover, the equality
holds if and only if M is complex-analytically isometric to a complex projective
space of constant holomorphic sectional curvature 4k,.

Remark 3. It is proved by Siu and Yau [7] that every compact
Kaehler manifold of positive bisectional curvature is biholomorphic to a
complex projective space.

With reference to Theorem B, we have the following

THeOREM 3. Let M be an n-dimensional compact Kaehler manifold. As-
sume that there is a non-constant function f such that Af = Af for some real
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constant A and that f has the properties
(@ [ (2Ric(grad (f), grad (f))—Ag (grad (f), grad(f))) > O,

M

(ii) { (2tr (Ric- Hess (f) - Hess (f))— A |Hess (f)|?) = 0,
M

where Hess(f) is the Hessian of f, and - is the matrix product of Ric = (R;p,
Hess(f) =(fp) for i, j=1,...,n,and A, B=1,...,n,1,..., 7. Then

(0.6) A< (n+ 1)K,

where K is the maximum of holomorphic bisectional curvature of M. Moreover,
the equality holds if and only if M is complex-analytically isometric to a
complex projective space of constant holomorphic sectional curvature K.

The author wishes to thank Professors K. Ogiue and N. Ejiri for many
valuable comments and suggestions.

1. Preliminaries. We use the following convention on the range of
indices:

i,j,k,...=1,...,n, A,B,C,...=1,...,n,1,..., 1.

We choose a local field of unitary frames e, ..., ¢, on M and denote by
Sa> fags fanc, --- the first ordered covariant derivative with respect to e,, the
second ordered covariant derivative with respect to e, and eg, the third
ordered covariant derivative with respect to e,, eg and e. of a real function f,
respectively. Let R = (R, gcp) be the curvature tensor of M. The following
relations are well known:

(1.1) fAB = fBA
(i.e, a Hessian matrix is symmetric),
(1-2) RABij = RABE}' = RijAB = RI)'AB =0, R{jki = Rijk{ = Rrkﬁ,

(1.3) Sasc—face = — Y. Roascfp  (Ricci identity).
D

Then we can easily see that

(14)  fu,..a,; and fy, 4,7 are symmetric with respect to i and j for any

19 <oy Apy.

The Ricci tensor Ric = (R;; and the scalar curvature t are defined by

Ri] = z Rj'kk_i and T= 22 Rl'l"
k i

2. An integral formula on the unit tangent bundle. Let TM¢ be the
complexification of the tangent bundle of M. Then we have TM®=TM*



344 S. UDAGAWA

+ TM~ (orthogonal sum), where TM* (resp.,, TM ™) is the (\/-_l)-eigenspaoe
(resp., (—V/-_l)-eigenspace) of the complex structure tensor J of M. We
denote by U, M™ the unit sphere of T, M™* for pe M. The following lemma is
essentially due to Willmore [12].

LemMA 1. Let T be any C-valued (k, k)-type tensor, i.e.,

’ T = (’I;l"‘iku'l“'jk)’

and
7;1...1,,-_1'1...],, = T(el'll:’ seey eik; e]l’ LERX ] e]k)'
Then
@y | T@,..,ud,..,9)=LYy Y T(€iyy)s -5 Ciggys €1ys -+ -5 €R)s
=1

UPM+ 0 if,..ig=

where L=(n(n+1)...(n+k—1))""vol(U,M") and the summation on o is
taken over all permutations of (1, ..., k).

In fact, by SU(n)-invariant theory [8], the left-hand side of (2.1) is
generated by Hermitian inner products. The coefficient of the right-hand side
of (2.1) is determined by using Weyl's tube formula [11]. As an easy
application of Lemma 1, we have the following

ProrosiTION 1. Let M be an n-dimensional compact Kaehler manifold.
Then

)'1 (M) > (n+ 1-)(n+2)H0/2—Tmax/2’

where H is the minimum of holomorphic sectional curvature and t_, is the
maximum of the scalar curvature of M.

We prove Proposition 1 in Section 3.

3. Proofs of the results. From Green’s Theorem we obtain

(3.1) 0= ‘ Z(ﬁ;fr); = I Z(lﬁ,lz'*'f;ﬁfr)

M ij M ij

Then, using (1.1}(1.3), we have

(3.2 Zj:f.-j, = gfj.-f = Zj:fjﬁ- %Raﬁf, =(=1/2)(4f)+ zl:Riiﬁ-
Therefore, if Af = Af, (3.1) and (3.2) imply

(3.3) I(Zlﬁjlz-(l/2)2|ﬁ|2+!Z,;Rn-fzfr) =0.

M ip i
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If M is Einstein, then Ry =(t/2n)d;, which, together with (3.3), implies

(34 0< | YIf?* = ((nA—1)2n) | Y 1A
Mij M i
This yields
(3.5) * A4 (M) 2 1/n.
Moreover, if (Ricci curvature) = k (> 0), then
Y Rififi= kY 1fi2,
il i
which, together with (3.3), impliés
3.6) 0< [ Y11 <((A-202) | Y IAI2.
M ij M i
This yields
3.7 Ay (M) = 2k.

LEmMA 2. Assume that B, (M) =0, where B, (M) denotes the first Betti
number of M. Then there is a non-constant function f such that f;; = 0 for any i
and j if and only if there is a non-trivial Killing vector field on M.

Lemma 2, together with (3.4)(3.7) and Remark 2, implies Theorem A
and Theorem 1.

Proof of Lemma 2. We can define the Laplacian acting on 1-forms
as follows (see [5]):

(3.8) a4(f) = - %(ﬁ1;+f.-yj)+ ;R.-yf;-

Then, using (1.1), (1.3) and (1.4), we obtain
39) A(f) =2 Ry fi=2Y fu5
j j

Since M is compact, it follows from (3.1) and (3.9) that
(f;; =0 for any i and j)<(} f;; =0 for any i)
J

<>A(f) =2) R;;f; for any i.
j
Then the following result of Matsushima [5] implies Lemma 2.

THeOREM C. Let M be a compact Kaehler manifold such that B, (M) = 0.
Then all the Killing forms on M can be represented as J grad(f), where J is

10 — Colloquium Mathematicum 56.2 .
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the complex structure tensor of M and f satisfies
A(f) =2Y R;f; for any i.
j

Next, we prove Proposition 1.
For any unit vector u of U, M*, we consigler the following function F (u)
on U,M*:

F(u) = Raa fu fas

where R;,z, is the holomorphic sectional curvature of the plane spanned by u
and &, and £, is the gradient of f with respect to u. Then, from (2.1) we obtain

at peM
(3.10) j F(u)=(n(n+l)(n+2))_lvol(U,,M*)(tZIﬁ|2+4ZR,-;f,rf,-).
i i,j

UupM*
On the other hand, we have
(3.11) [ Fawy=Ho | fifi= {Hovol(U,M*))n}Y £
uM* uM* i
Therefore, we get

312)  (n+)(m+DH, [ YIfI*< | (TZ|ﬂ|2+4Zj:Ri1frfj)
M i i,

M

< T max [ Z|ﬁ|2+4 “ Zlejl;f:p
M i M ij
This, together with (3.3), yields the desired assertion.

Next, we prove Theorem 2.
First, from Theorem C we see that there is a non-constant function f

such that
G.13) (4f ) = 23 Ra f;

because of (0.1). Let M = M, x ... x M, be the de Rham decomposition of
M. Then each factor M, (e =1,...,s) is a compact simply-connected
Einstein Kaehler manifold. Let

f=r1x..xf

be the corresponding decomposition of f. We denote by n, and t, the
dimension and the scalar curvature of M,, respectively. Then it follows from
(3.13) that

(Af ) = (to/n) /& for each a.
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Since

(1/2) [ 1477 = | YA N fi=(/n) | LI
M, My k M, k

we see that if 7, <0, then f*=const on M,. Therefore, from the non-
constancy of f it follows that there exists fe(1, ..., s) such that f? is not
constant and 75 >0 and there is a non-trivial Killing vector field on M,.
This implies that

Ay (Mg) = 14/ng
(by Theorem A). Note that
Tg/ng(ng+1) < H
(by Lemma 1), where H,y is the maximum of the holomorphic sectional
curvature of M;. Then

If the equality holds, then M = M, (ie, M is irreducible) and M has the
constant holomorphic sectional curvature H = H;. The converse is well
known. Then Theorem 2 is proved.

Finally, we prove Theorem 3.

The assumption (i), together with (3.3), implies

(3.14) fii=0 for any i and j.

From Green’s Theorem we have

(3.15) 0= | Y finfoi= f z (finl +Sfipic fr)-
M i j.k

On the other hand, it follows from (1.3) and (3.14) that
(3.16) ;ﬁm - ;(ﬁu- ZlRmk fe=— Zlwaz- §Rnn S
because the second Bianchi identity states that
Z’;Rmﬁ = - Zk:(RmE-J'*' Riga) = Ry .
Since
(=172 =(=1/D(4f); = Zﬁ = —ZRnﬁ,
we obtain

(3.17) Mg = Zzl:(war*'Rn- fip-
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This, together with (3.16), implies

(3.18) Y fine = (=42 fi5+ Z’ Ry fi5— %Rnﬁfw-
k -

Substituting (3.18) into (3.15), we obtain

(3.19) [ 2 al® = JEWIA* - X Rafisfry)
M i, jk M ij i,j,l
+ [ X Runfify
M i, jk,l

Since (f;) is a Hermitian matrix, by choosing a suitable unitary frame we can
assume that (fp) is a diagonal matrix. Then we see that

(3.20) . { Y Rupfufij= | X Rinfufa
M i, jk,l M il
<K (Y fufi=(KA2) | LIfI3,
Ml M

where K denotes the maximum of holomorphic bisectional curvature of M.
This, together with the assumptions (ii) and (3.19), yields

(3.21) | 2 1 fal? <(K4/2) | YIAP.
M i

M ik
Following the idea of [1], we put
(3.22) B(f)in = fin+ (A/2(n+1))(f; O +1i 0:)).

Then we can rewrite (3.21) as follows:

( Z |B(f).~}k|2 < (l/2(n+l))((n+ 1)K -2) [ zwz’
M

M i.j.k

which yields

A< (n+1)K.
If the equality holds, then B(f);; =0 on M, which implies that

Then the following result of Obata-Tanno [9] implies that M is complex-
analytically isometric to a complex projective space of constant holomorphic
sectional curvature K. The converse is trivial.

THEOREM D. Let M be an n-dimensional complete Kaehler manifold.
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Then there is a non-constant function f on M that satisfies
2f:ﬁ‘+C(f;51k+_fk6U)=0, C>0,
fija=0 for any i,j, k and A

if and only if M is complex-analytically isometric to a complex projective space
of constant holomorphic sectional curvature c.

REFERENCES

[1] K. Benko, M. Kothe, K.-D. Semmler and U. Simon, Eigenvalues of the Laplacian and
curvature, Colloq. Math. 42 (1979), pp. 19-31.
[2] D. Ferus, On the completeness of nullity foliations, Michigan Math. J. 18 (1971), pp. 61-64.
[3] T. Kameda and S. Yamaguchi, Certain sufficient conditions to be a complex projective
space, Colloq. Math. 49 (1985), pp. 235-24t1.
[4] S. Kobayashi, On compact Kaehler manifolds with positive Ricci tensor, Ann. of Math. 74
(1961), pp. 570-574.
[5] Y. Matsushima, Sur la structure du groupe & homéomorphismes analytiques dune certaine
variété Kaehlerienne, Nagoya Math. J. 11 (1957), pp. 145-150.
[6] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential
equations, Proc. US.-Japan Sem. in Differential Geom., Kyoto, Japan, 1965, pp. 101-114.
[7] Y. T. Siu and S. T. Yau, Compact Kaehler manifold of positive bisectional curvature,
Invent. Math. 59 (1980), pp. 189-204.
[8] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc.
[9] S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Japan 30
(1978), pp. 509-531.
[10] H. Urakawa, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer.
Math. Soc. 301 (1987), pp. 557-589.
[11] H. Weyl, On the volume of tubes, Amer. J. Math. 61 (1939), pp. 461-472.
[12] T. J. Willmore, The Euclidean Laplacian, E. B. Christoffel, edited by P. L. Butzer and
F. Fehér, Birkh3user Verlag, Basel 1981, pp. 508-516.

DEPARTMENT OF MATHEMATICS
SCHOOL OF MEDICINE

NIHON UNIVERSITY
ITABASHI-KU, TOKYO 173

JAPAN

Regu par la Rédaction le 25.4.1986



