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In a previous paper [3], the authors investigated the structure of
algebraic radicals in semigroups and extended some results in commutative
algebras to compact abelian semigroups with zero. In this paper *, we
study the topological radical of a semigroup. Several results concerning
abelian semigroups with zero and local zeros are obtained. This paper
is independent of [3].

By the topological radical of a semigroup S with zero, we mean the
union of all the nil ideals of 8. An element b in § is called nilpotent if b™ —0,
that is, if for every neighborhood U of 0, there exists an integer n, such
that b"¢ U for every n > n,. We denote by N the set of all nilpotent
elements of 8. An ideal A of S consisting entirely of nilpotent elements
is called a nil ideal of 8. In case N is an ideal of S, N turns out to
be our topological radical of S. The concept of nil ideals was first intro-
duced by Numakura in 1951 [6]. In his paper, he investigated the structure
of 8§ when N is open. Some amplifications of his results on compact semi-
groups with zero were given by Koch [4].

It is the purpose of this paper to apply the work of Numakura [6]
on topological semigroups with zero to compact abelian semigroups with
zero and local zeros. We are mainly interested in studying some properties
of the set N. We prove that if N can be embedded densely in an abelian
semigroup 8, then § has no local zeros. We also show that if a semigroup S
contains zero and local zeros, then S must be disconnected. Some condi-
tions which lead to the existence of a local zero in a compact N-semi-
group are given. A characterization of compact abelian N-semigroups
is obtained. Moreover, if S is a compact 2-semigroup with zero such that
N2 ¢ N, then N—XN is either a group or a semilattice of groups. The
set of topological zero divisors of an element @ in 8 will also be treated.

Throughout, for sets X, Y = 8, X — Y denotes the complement Y
in X, XY denotes the set of all products xy with X and y <Y, X denotes

* This research was supported by NRC Grant A 3026.
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the closure of the set X in § and X' denotes the complement of X in S.
All spaces are topological Hausdorff in this paper. Unless otherwise
stated, § will always be regarded as a topological abelian semigroup
with zero. The reader is referred to [7] for terminology and notation.

1. Definitions and preliminary results. In this section, N denotes
the set of all nilpotent elements in § and S denotes a non-empty abelian
semigroup with zero. To avoid trivialities, we suppose that 8§ # {0} and
the space S has at least three points.

Notation. Let A be a subset of S.

J(A) = AU AR, that is, the smallest ideal containing A.

Jo(4) = the union of all ideals contained in A4, that is, the largest
ideal contained in A if there are any.

Definition 1.1. 8 is said to be an N-semigroup if N is an open
subset of S.

S is said to be an Q-semigroup if for any two ideals I, and I, such
that I, NI, # @, then either I, < I, or I, < I,.

Definition 1.2. An element 0 such that a0 = 0a = 0 for all a in §
is called a zero element of 8 and it is easily seen that 0 is uniquely defined.

An idempotent element ¢ # 0 of 8 is called a local zero if there exists
an open neighborhood U in 8 such that ¢e U and ¢ is the zero for U, that
is, ex = xe = ¢ for every ze U. We observe that a zero is not a local zero.

Definition1.3. Let a be an element of 8. Define Tod a = {xe SjaxreN}
that is, the set of all topological zero divisors of 8. Tod a is non-empty
since {0} is always in Tod a.

Definition 1.4. Let £ > 1 be an integer. A k-ideal A of 8 is a non-
-vacuous subset of § such that A*S < A. A principal k-ideal generated
by any subset 4 of S is the set J,(4) = AuAd®uU... UA*S, which is
the smallest k-ideal generated by the sets {4, 4% ..., A%}

The following results are elementary, but they are useful. Some
important properties of the set N will be disclosed after these propositions -
and counter-examples.

PROPOSITION 1.5. (i) The set N is always a subsemigroup of S.

(ii) Let S have a unit u. Then ue Toda if and only if ae N for any
aeS.

(iii) If e is an idempotent element of S, then N < Tode.

(iv) If N is the topological radical of 8, then Tode is an ideal of 8.

(v) If each Toda is an ideal of 8 for every ae S, then every principal
k-ideal generated by an element ne N is contained in N for k> 1. B

(vi) If N 4s connected and S contains at least an idempotent e + 0,
then there exists a subsemigroup T of S such that every element of N is con-
tained in a connected ideal of T.
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We only prove (v) and (vi); the others are direct consequences of
our definitions and we leave them to the reader.

Proof. (v) Take ne N, and let %k >1 be an integer. Then #*e¢ N.
Hence ne Todn*"!. By our assumption, Todn*~! is an ideal of S. Thus
for any ye S, nye Todn*='. That is, n*ye N. In other words, n*§ < N.
Since the principal k-ideal generated by the element n is the set J,(m)
= nuUniuU ... un*unts, clearly, J,.(n) < N.

(vi) To prove (vi), we first note that Tode is a subsemigroup of &S.
For let xe Tode and ye Tode. Then we have exe N and eye N. Since §
is abelian, by (i), NV is a subsemigroup of §. Thus exy = e2zxy = (ex)(ey)e N*
< N. Hence xye Tode. Now let us denote Tode by T. By (iii), we have
N cT and 0¢T. Let 2 be the component of zero in 7. Then 0e 2 < T
which is a maximal connected set contained in T. Since N is connected,
we have {0}e N = 2. For any element ye T, 2y, being the continuous
image of a connected set, is connected and contains zero. By the maximality
of the set 2, we have 2y = 2. So 2 is a connected ideal of 7' and every
element of N is contained in 2. Our proof is completed.

1.6 Counter-examples. Example 1. If § is not abelian, then N is
not necessarily a subsemigroup of S. For example, let

S G IS R G M o

Then under the ordinary matrix multiplication, we have the follow-
ing multiplication table:

“lelsla]

d

<|sfe[=|o]e

o’s!&[o'o’&
<|olo|s|o]=
olele|e]e]e
&[olo[e‘o’&

|

Clearly, N = {0, z,y}, N> = {0,¢,d}. Thus N* ¢ N. This example
demonstrates that the condition abelian is necessary.

Example 2. Even if § is an abelian semigroup, N is not necessarily
an idempotent set. For let S be the real line with the usual topology.
Define x*y = 0 for all ,y in S. Then N = 8 but N2 = 0.

Example 3. Evenif N is connected, Tod ¢ is not necessarily connected.

For let

S ={—1}u[—»;—,%]u{1}.

34 — Collogquium Mathematicum XXV.2
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Define x*y = zy for x and y > 0:

xxy = —py for x and ¥ <0,

<
=20, <0;

2y =0 forx>0,y<0ory

then Tod{l} = {—1}uU[—4, 4], which is not connected.

Example 4. Even if § is connected, N is not necessarily connected.
For let 8§ be the two line segments joining the points (0, 0), (1, 0) and
(1, 0), (0,1). The topology of S is the usual topology inherited from the
plane. Define the multiplication on 8 by (x,, ¥,)* (%, ¥;) = (min(x,, ,), 0).
Then 8 is clearly a connected abelian semigroup with zero. But N = {(0, 0),
(0, 1)} which is disconnected.

Example 5. The following example shows that there exists a k-ideal
of § with k¥ > 1.

Let § =1{0,1,2,3,4,5} be a semigroup with the following multi-
plication table:

~lol1]2|3]4]

olo|o|ofo|o]o0
1]|ojo|0l4|0]2
2]0/0/0/0|0|0
3]0|5/0[0/ 2|0
4]0(2]0(0|0|0
5/0]0j0|2[0|0

Let A ={0,1,2,3,4}; then A*={0,2,4,5}. Clearly, AS ¢ 4,
but A*8 = {0, 2,4} < A.

ProrosiTioN 1.7. If N’ consists only of idempotent elements, then N
18 the topological radical of S. If N s the topological radical of S8 and G is
any non-zero subgroup of 8, then G = N'. ‘

Proof. To prove that N is the topological radical of 8, it suffices
to show that N is an ideal of S. But this is trivial since N’ consists only
of idempotent elements. If N is the topological radical of S, then N,
in particular, is an ideal of 8. Now let us suppose that N NG # @. Then
there exists x¢ N NG@. As G is a subgroup of §, Gr = zG = G. Hence
G = Gr < SN = N which implies that G = {0}. Our supposition is there-
fore impossible.

ProOPOSITION 1.8. Let a be any arbitrary element in 8. If N is an open
subset of S, then Toda is open. If N is a closed subset of S, then Toda is
closed.

Proof.For each z < Tod a, we have ax e N. According to our assumption,
N is open and hence there exists a neighborhood V(ax) of ax such that
V(axr) = N. From the continuity of multiplication, there exist neigh-
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borhoods V,(a), V,(x) of the points a, x, respectively, such that V,(a) V,(x)
< V(ax) = N. Hence aV,(x) = V,(a) V,(x) = N. This means that xe V,(x)
< Toda. Hence Toda is an open subset of S. To prove that Toda is closed

if N is closed, it suffices to prove that Toda = Toda. Let ze Toda. Then,
since S is Hausdorff, there exists sequence {z;}« Toda such that z; — x.
This implies that ax;e N for each ¢ and, by the continuity of multipli-
cation, we have ar; — ax. Since N is closed, we have axe N. This means
that ze Toda.

Remark 1.9. The following example shows that if N is not open,
then not all Toda are open sets.

Let § ={Z"}uU[0, o), when {Z~} are the negative integers. The
topology of § is the usual topology inherited from the real line. Define
the multiplication * in § by

min(x,y) whenever z, ye [0, o),
if xe{Z },ye[0, c0) and vice versa,

—xy if both =,ye{Z }, where xy is the ordinary
multiplication.

Clearly, N = {0} is not open. For any ae [0, oo), Toda = {0}U{Z },
which is open subset of 8. For any ae {Z }, Toda = [0, o) which is not
open.

Now let us call a semigroup S an A-semigroup if Toda is an open
subset of 8 for every ae S. From Proposition 1.8 we know that if S is
an N-semigroup, then § is an 4-semigroup. But the converse statement
is not known to the authors. That is, if S is an A-semigroup, is S an
N-semigroup? (P 796)

The following gives a necessary and sufficient condition for the set N
to be a k-ideal of 8.

THEOREM 1.10. Let 8 be connected and let J(N) be the k-ideal generated
by N. Then N is a k-ideal of 8 if and only if the component € of {0} in N
coincides with the component 2 of {0} in J (N).

To prove this theorem, we show something more general, namely,
if we replace the set N by any subsemigroup A of S containing zero, we
shall see that our statement still holds.

Proof. Since A is a subsemigroup of 8, we have J,(4) = AU 4%V
U... UA¥8 = AuA*S8. Suppose A is a k-ideal of S. Then A*S < A
and we have J,(A) = A. Thus, the component ¢ of {0} in A and the
component 2 of {0} in J,(A) coincide. For the converse part, we first
observe that 0 ¢ AS. Also, for any ae A, (a, 0)e ({a} x 8) N (8 x {0}). Since 8
is connected,

Ty =

(U ({a} x 8))u (8 x {0}) = (4 x 8)U(8 x {0})

aeAd
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is a connected subset of S x 8. By the continuity of multiplication, we
infer that A8 is a connected subset of S containing 0. As a consequence,
0cA*S and A*S is connected. Moreover, J,(A) =2 A¥S. Thus the com-
ponent 2 of {0} in J,(A4) contains 4*S. On the other hand, 4 = J,(A4)
and {0} A. Thus the component % of A is also in J,(4). By our assumption,
P =%. Thus A¥S ¢« 9 = € < A, that is, 4 is a k-ideal of 8.

2. Abelian N-semigroups. We are now going to study, in this section,
the structure of N-semigroups, that is, semigroups S in which the set N
is an open subset of S. We use F to represent the collection of all idem-
potents of § and E* = E— {0}. It is easily seen [6] that FE is closed. An
idempotent ¢ may be looked upon as a subgroup of 8. Following the
usage of [2] and elsewhere, H(e¢) is the maximal group containing an
idempotent e. Also, by the notation of Koch [4] and Numakura [6],
we define, for each z in 8,

r@ = {2, '@ =), K@ =N{l(@|n=>1}

and in case I'(x) is compact, we have I'(z) = {x, %, ...}U K (x), where
K (x) is the minimal ideal of I'(x) and is the maximal subgroup of I'(x).
If I'(xz) is compact for each element x in 8, then 8 is called elementwise
compact.

THEOREM 2.1. If S i¢ a compact N-semigroup (n\,ot necessarily abelian)
which is not mil, then there always exists a compact subgroup of 8 which
18 disjoint from N. i

Proof. Since S is not nil, there exists at least an element e S with
xz¢ N. By lemma 2.1.4 of [7], p. 58, x¢ N implies 2" ¢ N for all positive
integers n. Thus the sequence {2"},_, = N'. Since N is open, N’ is closed
and hence compact. Therefore, I'(x) < N'. Clearly, I'(z) is compact. So
there exists a unique idempotent 0 # e* = ee I'(x). Consider H(e) in
I'(x). Since 8 is compact, H(e) is a non-zero compact subgroup of §.
We claim that H(e) NN = @. For otherwise, there exists an element y
such that ye H (e) and y ¢ N. Since H (¢) is a group, we have {y"}»_, = H(e).
By the compactness of H(e), there is a unique idempotent ¢ = ¢, I'(y)
< H(e). On the other hand, {y"},_, < N and the set of cluster points of
this sequence is the set {0}. We thus obtain that ¢, = 0. But if 0 H (¢),
then H(e) = {0}, which is false.

One would naturally ask: (P 797) Under what conditions can S be
uniquely decomposed into two disjoint sets & and G, where N is the set
of nilpotent elements and G is a compact subgroup of 8, that is, we need
8 = Nu@, N nG = @. The authors are unable to answer this question,
however, algebraically, we can construct the following



NILPOTENT ELEMENTS OF SEMIGROUPS ) 217

THEOREM 2.2. Let N be an abelian semigroup, G an abelian group
which i8 disjoint from N. Define the multiplication © in the set S = GUN
as follows:

(a) For ,ye@G, let x ©y = x*y, where * i8 the group multiplication.

(b) For z,ye N, let x ©y = x-y, where - is the semigroup multipli-
oation.

(c) For ze@, ye N, let 0Oy =y =y O .

Then S is an abelian semigroup, denoted by S(N,G; ®), in which N
18 the unique maximal proper ideal of 8. In other words, N can be embedded
as the unique maximal proper ideal in S(N,G; ©O).

Proof. One can easily verify that the multiplication © of 8 is asso-
ciative, commutative and closed, hence S(N, G; ©) is an abelian semigroup.
Also, it is easily seen that N is an ideal of 8. We only have to show that N
is the unique maximal proper ideal of S. In fact, suppose A is an ideal
such that A ¢ N. Then there exists ae A, a¢ N. Thus, for each ze¢ N,
we have a ©x =x¢AN c A, that i3, N < A. Suppose NS 4 < 8.
Then GNA #O. Let beGNA. As G is a group, Gb =G < S4A c A.
Hence § =GuA < A, which implies S =4. Thus A4 N=N = A
or A =8, and N is indeed the unique maximal ideal of S.

Now, we give a characterization of abelian N-semigroups.

THEOREM 2.3. Let S be an abelian compact semigroup which i8 mot
nil. Then 8 is an N-semigroup if and only if E* is compact and non-empty.

In order to prove this theorem, the following lemma is crucial:

LeEMMA 2.4. If 8 i8 an elementwise compact (or sequentially compact)
abelian semigroup, then N is the topological radical of S.

Proof. (i) Suppose S is elementwise compact. We wish to show
that N is an ideal of §. Let x¢ N and ye 8. Consider I'(y) which, by our
assumption, is compact. Take any ze I'(y). We have 20 = 0. Thus, by
the continuity of multiplication, for any arbitrary neighborhood U of 0,
there exist neighborhoods w(z)e % (2), w,(0)e %(0) such that w(z)w,(0) < U,
where ¢(2) and %(0) are complete systems of neighborhoods of the ele-
ments 2z and 0, respectively. Let us consider a system of neighborhoods
{w(2)| ze I'(y)}. It is evident that

I'y) e U w(z).
zel'(y)

Since I'(y) is a compaet semigroup, there exists a finite system w(z,),
w(2;), ..., w(z,) which also covers I'(y) and, for ¢ = 1,2,..., n, we have
w(z,-)w,i(O) c U. Evidently, there exists a neighborhood w(0)e %(0) such
that

w(0) < C)w(z,—) and w(z)w(0)cs U
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for every ¢ =1,2,...,n. But w(0) is a neighborhood of 0 and ze N,
and hence z"e¢ w(0) for » > n, for some n,. Thus, for n > n,,

Yy a"e I'(y)-w(0) < YU{w(z)| i =1,2,...,n} w(0)c UU =UT.

This means that zye N, that is, N is an ideal of S.

(ii) Now suppose S is sequentially compact and N is not an ideal
of S. Then we can find ¢ N and y e S such that 2y ¢ N. That is, (xy)" +> 0.
Thus

(*) for any open neighborhood V of {0}, there exists a subsequence
(xy)"* of (xy)" such that (zy)"*k¢V for every k =1,2,...

Consider the subsequence {y"*|k = 1, 2, ...}. Since § is sequentially
compact and Hausdorff, there exists a subsubsequence {y"*:| i =1, 2, ...}
of {y"*} such that y"k — se 8.

Clearly,

lim (xy)"*: = lim (&™:y™:) = lima™klimy™*; —0-8 = 0.
T i D) T

This, however, contradicts (*). So, indeed, N is an ideal of S.

COROLLARY. If 8 i8 a compact abelian semigroup with zero, then N
28 an ideal of 8.

We are now ready to prove Theorem 2.3. Suppose that S is an abelian
compact N-semigroup. Then N is an open subset of . Clearly, E* = N nE.
As N is open, N’ is closed. Also, it is well known [6] that E is closed, so
by the compactness of S, N' and E are compact subsets of 8. Therefore E*
is compact and non-empty. Conversely, let us suppose E* is compact
and non-empty. Then § — E* is open and N = § — E*. Clearly, J,(S — E*),
the union of all ideals of § contained in § — E*, is open [7]. By our Lemma
2.4, N is an ideal of S and hence N < J,(S — E*). Suppose, if possible,
NS Jo(S—E*). Then there exists zeJ,(S—E*), x¢ N. Consider the
principal ideal J(x) generated by x. Then J(x) = zuxS c J,(S — E*).
Since § is compact, so is J (). Hence I'(z) = J () and there exists a unique
idempotent element €2 = ee I'(¢) = J (S — E*) (cf. [7]). Clearly, ¢ = 0,
for otherwise e¢Jy(S—E*). But if ¢ =0, then K(x) = eI'(x) = {0}.
Since K (x) is the set of cluster points of the sequence {«"};_,, we would
have 2z — 0. This contradicts z¢ N. Thus we conclude that N = J,(8 — E*),
which is an open subset of 8.

COROLLARY 1. Let S be compact. If there exists an idempotent e # 0
such that N = Tode, then Tode contains at least one non-zero idempotent
of S.

Proof. By Lemma 2.4, N is an ideal of S. Since N #* Tode, so by
Proposition 1.5 (iii) and (iv), N Z Tode and Tode is an ideal of 8. Applying
the same argument as in the proof of Theorem 2.3, we see that there
exists 0 # f2 = fe I'(x) < Tode.
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COROLLARY 2. If 8 is compact and D is the component of 0 in N, then
NS = D.

COROLLARY 3. Let S be compact. If E< N and N # 8, then N is
contained in a proper compact ideal of S.

Proof. Suppose N # S. According to our Lemma 2.4, N is a proper
ideal of 8. Thus N is contained in all proper maximal ideals M; of 8,
where M; has the form J,(S — ;) for some z;¢ S—N. Hence E ¢ N = M,
for all i. By Koch and Wallace [7], p. 44, we have §* c M, for all 4, that
is, 8% ¢ (N M;. But since 8 is compact, by Koch and Wallace again [5],

NM; = S% Hence 8* = () M;. Clearly, () M, is compact and Nc N M.

THEOREM 2.5. If 8 is a compact Q-semigroup such that N* & N, then
N — N is either a group or a semilattice of groups.
To prove Theorem 2.5, we need the following

LEMMA 2.6. Let S be a compact Q2-semigroup. If 1 is a minimal ideal
containing N properly, then I — N is a closed non-nil subsemigroup of S
if and only if I* & N. '

Proof. One part is trivial. For the other part, let us consider 7 — N.
We claim that I — N is a subsemigroup of S. For let @, be I — N. Then
a",b"e I — N foreveryn =1, 2,... Now, let abe N. Consider J(a) = au Sa
< I, which is the principal ideal generated by a. As a¢ N and by Lemma
2.4, N is an ideal of S, we have J(a) ¢ N. Since S is an Q-semigroup,
we obtain N G J(a) « I. However, by the minimality of I containing ¥,
we conclude that J(a) = I. Similarly, J(a) =J(a") =1 for every
n=12,....,J(b) =J(@B") =1 for every n =1,2,... Now J(a)J (D)
= (auU Sa) (bUSh) = abuSab= J(ab). So I* = J(ab) < 1.’ According to
our assumption, I* ¢ N. Therefore, we have N S I* < I, which implies
J (ab) = I. Similarly, J ((ab)") = I for every » = 1, 2, ... Hence () J((ab)")

n

= I. Since abe N = (ab)" - 0, we infer that I = (N J((ab)") = {0} which

is a ‘contradiction, for we assumed that I contains N properly. This es-
tablishes our claim. Now take ae I — N. Then a, a?,... are all in I —N.
Hence

I'(a) = {a"}y., < J(a)

and I'(a) is compact. Thus there exists a unique idempotent f = f*¢ I'(a)<1.
Since a¢ N, by the same argument as in Theorem 2.3, we see that f = 0.
Hence I — N contains a non-zero idempotent and I — N is a closed non-nil
subsemigroup of S.

We now prove Theorem 2.5. By Lemma 2.4, N is an ideal of S which
contains N properly. We claim that N itself is the minimal ideal containing
N properly. For suppose that there exists an ideal N, such that ¥ & N,
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c N. Take x¢ N, — N. Then, as S is an Q-semigroup, we have N Z J(x)
=xuzS < N, < N. As 8 is compact, J (r) is closed. Hence by the defi-
nition of the closure of N, N = J(x), which implies N, = N. Now apply
our Lemma 2.6; N is a minimal non-nil ideal of 8. So there exists a non-
-zero idempotent 62> = e N — N such that J(¢) =euSe = N. This
implies that N = eS. Hence, by a result of Koch [7], p. 57, eéS— N is
a group and ¢ is primitive. Moreover, if N contains more than one idem-
potent, then ¢S — N is the disjoint union of the maximal groups ¢,8 — N
for all ¢,¢e N — N (cf. [7], p. 61). In other words, ¢S — N is either a group
or a semilattice of groups.

The following is a slight modification of a theorem given by Numakura
[6], p. 407, Theorem 4. However, for the sake of completeness, we give
the proof in detail.

THEOREM 2.7. If 8 is locally compact and N is a compact ideal of 8,
then for any open meighborhood V of N, there always exists an open non-nil
subsemigroup J of S such that N «cJ < V.

Proof. Since S is locally compact and Hausdorff, § is regular and
we can find a neighborhood U of N having compact closure such that
NcUcU«cV, where V is any open neighborhood containing XN.
Since N is an ideal, NU = N < U. By the continuity of the multiplication
and compactness of N and U, we can find an open set W with N <« W < U,
and WU c U. Since WcU, W*c WU < U. Similarly, W3c U,...
and hence | JW" < U. Write T = (JW". T is clearly a compact subsemi-

n n
group of S contained in V. Now let J = Jy(W), the union of all ideals
contained in W. Therefore J « W « T < V. Since S is compact, J is
therefore open and is a subsemigroup of S. Since N is an ideal contained
in W, NS J cWcV. Clearly, J is non-nil, for otherwise, we would
have J < N, which is false.

3. Semigroups with zero and local zeros. In this section, we shall
consider abelian semigroups with zero and local zeros. Throughout, e*
will stand for a local zero in 8.

THEOREM 3.1. The closure of N contains no local zeros.

Proof. Let N = T and suppose T has a local zero. As N is dense in T,
then for any teT and any neighborhood V (t) of ¢ we have V({) NN = @.
In particular, if e* is a local zero of 7, V(e*) "N # @, where V(e*) is
such that xzeV(e*) implies xre* = e*xr = e*. Let us take zeV(e*)NN;
then e*x = ze* = e¢* and, by definition of local zero, e¢*¢ N. However,
since e N, we would have (e*x)* = e*a2* — 0. This means that e* = 0,
which is a contradiction. We therefore conclude that N has no local zeros.

The next theorem tells us that if § contains zero and local zeros,
then § must be disconnected.
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THEOREM 3.2. If P is a conneclted subset of S which has a local zero
e*e P, then PAN = 0.

Proof. We first claim that e* is the zero element for the subset P.
Now P is connected. Hence ¢* P is a connected subset of P. Clearly, e¢* e ¢* P.
As e* is a local zero for 8, then there is an open neighborhood U in §
such that e*xe UNP = V, e*x = we* = e*forallze V. Hence e*P NV +# @.
V is open in P. Thus ¢*P NV is open in P. Consider zee*PNnV. Now
xee*P and xeV imply that = e*p, vV with pe P, and this implies
that @ = e*?p = (e*p)e* = xe* = e*. Hence {¢*} = ¢*P NV is open in P.
But P, being the subspace of a Hausdorff space, is Hausdorff. Hence
{e*} is closed in P as well. Thus {e¢*}, being an open and closed subset
of the connected set ¢* P, must be equal to e* P. That is, e*P = {e*} = Pe*.
Our claim is established. Now let us suppose that P "N # @. Then there
exists xe PN N. Hence < P and z¢ N. Since e* is the zero for P, we* = e*.
By the continuity of the multiplication, for any arbitrary neighborhood U
of e*, there exists a neighborhood V of x such that Ve* ¢ U. But since
xe N, VNN %= @. Let ye VN N; then ye N and yeé* < U. As U is a neigh-
borhood of e*, this implies that (ye*)e* = e*(ye*) = e*. That is ye* = e*.
But then, (e*)" = (ye*)" = y"e* — 0, which is a contradiction. So PN N
= 0.

COROLLARY 1. If N’ is a connected subset of 8 containing e*, then Tod ¢*
18 a prime ideal containing N.

Proof. N is an ideal of S since § is compact, by Lemma 2.4. By
Proposition 1.5 (iii) and (iv), N < Tode* and Tode* is an ideal of S. We
only need to verify that Tode* is prime. For this purpose, let us consider
abe Tode*, a¢ Tode*. Then it follows that abe*e N and ae*¢ N. Since
ae*¢ N, we have ae*e N'. Now, by our theorem, ¢* acts as a zero in N'.
Hence (ae*)e* = e*, that is, ae* = ¢*. Thus abe*e N = b(ae*)e N = be*e N
= be Tode*. Thus Tode* is indeed a prime ideal of § containing XN.

COROLLARY 2. If e i8 any non-zero idempotent of S such that e* ¢ Tode,
then "Tode N€ = O, where € is the component of e* in 8.

The following theorem concerns the existence of a local zero in abelian
semigroups with zero.

THEOREM 3.3. Let S be a compact abelian N-semigroup. If N' = E*,
which is a connected subset of S and is disjoint from N, then S contains
a local zero. Furthermore, if 8 has a unit and N' is arcwise connected, then N’
18 contractible.

The proof of this theorem is a consequence of the following

THEOREM 3.4. Let 8 be a compact connected semigroup (not necessarily
abelian) such that 8§ = ES = SE and E is an abelian submob of S. Then 8
has an idempotent e such that eE = Ee = ¢ and the minimal ideal M (8S)
= H(e) = eSe = ¢S = Se. Moreover, H*(8) is isomorphic to H*(eSe).
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Proof. Let M(8) be the minimal ideal of 8. Then, by 1.22 of [2],
we can find a primitive idempotent ¢ in M (S) such that eSe is a group
and eSe = eM (S)e. Let H(e) be the maximal subgroup of S containing e.
Then one can easily verify that H(e) = eSe = eM (S)e. By Theorem
1.2.11 of [7], p. 34, we therefore have M (S) = Se8, which is a two-sided
ideal of S. Hence, by Lemma 1.2.8 of [7], M(S) = (SenE)eSe(eS NE).
We now show that under the condition of the theorem we have SenFE
=eSNE = {e}.

Suppose ¢,e Se NE. Then we can write ¢, = xe for some xe S. Hence
ee, = eree eSe = H (e). Since E is abelian, ee, is an idempotent and hence
ee; = e. Thus ¢, = xe = (ve)e = ¢,¢ = e. Similarly, we have eSNE = {e}.
Thus we have established that M (8) = eSe = H (e). Since M (8) is closed,
we have H*(8) =~ H*(eSe). It remains for us to show that ¢eE = Ee = {e}.
Let e,¢ E. Since H(e) = M(S) is an ideal, we have H(e)S <= H (e), SH (e)
< H(e). Thus ee,e H(e), e,ee H(c). Since ee, and e,e are idempotents,
we have ee, = ¢;e = e. It only remains to show that M (8) = Se = 8.
In fact, let  be an element of M (8). Then xe H(e); we have x = exe Sx.
Thus H(e) = M(S) =« Sx. On the other hand, Sz < SM(S) <« M(S).
Thus H(e) = M(8) = Sz. Similarly, M(8S) = 28 for any ze¢ M(S). In
fact, for any xe M(S), it is easily seen that we have M (S) = M(S)x
= M(S) = Sz = 28.

We now prove Theorem 3.3.

Since S is a compact abelian N-semigroup, by Theorem 2.3, we have
N' = E" is compact and non-empty. Therefore E* is a compact subsemi-
group of §. The hypotheses of Theorem 3.4 on N’ are satisfied. Hence,
by Theorem 3.4, we can find an idempotent e* such that e*N' = N'e*
= {e*}, that is, S has a local zero e¢*, and e* is the zero of N'. Moreover,
by Theorem 3.4, N’ is acyclic. Now suppose S has a unit w. Then clearly,
ue E*. As N' has a unit and is arcwise connected, we apply a result of
Gottlieb and Rothman [1]. Recall that they say that the semigroup N’
satisfies * if for each z in N', there is an element y such that zy = .
Since N’ has a zero, we see that N’ satisfies *. Then by Lemma 1 of [1],
we infer that N’ is contractible.

THEOREM 3.5. Let S have a zero and local zero e*. If N' = E* is con-
nected, then Tode* = () Toda.

aeck*

Proof. Since N' = E*, by Proposition 1.7, N is an ideal of 8. By
Proposition 1.5 (iv), Todz is an ideal of § for every xe S. Suppose if pos-
sible, Toda Z Tode* for all ae N’; then there exists xe Tode*, x¢ Toda.
As Tode* is an ideal of 8, we have wrae Tod ¢*, which implies axe*e N.
But since x¢ Toda, we have ax¢ N. Hence axe N' which is connected
and is the set of non-zero idempotents of S. So, by Theorem 3.2, e* is
the zero for N'. Thus axe* = e*e N', a contradiction.
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4. An example. In this section, we construct an example to show
that even if 8 is not compact, but § is locally compact and not locally con-
nected, some important properties concerning the set N, which we have
just discussed in sections 2 and 3, are still valid.

Example. Let S* be the subset of the plane E* consisting of line
segments L,, joining the points (1,1) and (1/n,0) for all n = 1,2, ...
Let S = 8*—(1,1). The .topology of S is the usual topology inherited
from E*

(3]

00 F9(k0)  (10)
For any point (z,,y,) on L,, we have

1 1
Xy = }'n_ +(1_}‘n) = }‘n(_ _1)+17
" ([

Yo = (1—14,),
where 0 < 4, < 1.
Define the multiplication * on § as follows:

- 1 R 1
(mn’ yn) * (wm’ ym) = (ln (_ _1)+17 1—)‘11) * (lm (_ —1) +1, 1—')»;11)
n m

=(6(7’}7—b——1)+1,0),

where 6 = min(4,, 4,,) and ¢ =-min(1—4,,,1—2,) = min(y,,, ¥,,). Clearly,
* is closed and associative and § is a semigroup.

To see that § is a topological semigroup, we have to verify that *
is a continuous mapping from S x 8 into 8. It suffices for us to check
that * is continuous at (0, 0), for the continuity at other points is clear.
It is easy to check continuity at (0, 0).

Then 8§ is a topological semigroup with zero.

In this example, § is locally compact but not locally connected.
The point (1, 0) is a local zero for S.

_ 1
N =(0,0)u{(——, 0)
n

which is totally disconnected and has no local zeros of §. N is an ideal
of 8. The component of (1, 0) in § is clearly disjoint from N. The topo-

n=2,3, },
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logical zero divisors of e* = (1, 0) is the set § — L, which is the maximal
ideal among the ideals {Toda| ae N'}. Moreover, Tode* is a prime ideal
containing N. Since N’ # E*, we can see that § is not an N-semigroup.
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