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1. Let N > 3 be an integer. A sequence of integers a,, a,, ... is8 weakly
uniformly distributed (mod N) if and only if, for every pair of integers
jl’jz with (ju N) = (jsy N) =1,

1
a,=j)(mod N)
lim — =% =1,
200 1
a”Ejz(modN)
n<e

provided the set {j: (a;, N) = 1} is infinite. For shortness we write that
such a sequence is WUD (mod N).
We use the following modification of the theorem of Narkiewicz [2]:

Let f(n) be a multiplicative, integer-valued function such that, for every
integer k> 1, there exists a polynomial W,(x)eZ[x] and f(p*) = W,(p)
for all primes p. Let, moreover,

By (f, N) = {reG(N): Wi(x) = r(modN) has a solution in G(N)},

where G(N) denotes the multiplicative group of residue classes relatively
prime to N, and let A,(f, N) be the subgroup of G(N) generated by the set
By = By (f, N).

If R\(fy,N)=...=R,_(f, N) = O and R, (f, N) # O for some m,
then the sequence f(1), f(2),... 18 WUD(mod N) if and only if, for every
non-principal character y of G (N ) which 18 trivial on A,,, there exists a prime p
such that

14+ D 2(f(@))p~"™ = o.
j=1

In paper [2] those numbers N for which functions d(n) and ¢(n)
are WUD (mod N) were also found.
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2. The aim of this note is to prove the following

THEOREM 1. The sequence o(1),0(2), ... 48 WUD (modN) if and only
if 61N,

Proof. For f(n) = o(n), we have W;(z) = 1+z+a%+...+2’.

(i) Let at first 2+ N. In this case

R, ={n<N: (n,N) =(n—1,N) =1}
is non-void as 2eR,. Let N = pilpz2... pi* (p; # 2). Then
G(N) = G(p1")DG(P2)D ... DG(pF),

and so we can represent every element y of G(N) in the form (y,, ¥, ..., ¥z)
with y; G (pyt), ¥ = y(modps).
In this notation 4, is a subgroup of G(N) generated by the set

{(¥1s Y2y -++» Yx): ¥; &= 1(modp;), y; G (p5)}.

Denote by ¢4,9:, ..., 9, the primitive roots modpi!, p;2, ..., pik,
respectively. Since g; = 1(modp,), the elements

(-1,...,—-1,¢9;,, —1,..., —1) for¢=1,2,...,k
belong to R,, and so the elements
1 (-1,..., —1,¢*", —1,..., —1)
=(—1y...y, —1, ¢4y —1,..., —1)¥+1
and
(1) (1,...,1,4%1,...,1) =(—1,..., —1,9;, —1,..., —1)*

belong to 4,.
Assume now that p; #3, ¢ =1,2,...,k Then the congruence

(2) 2w; = —1(modpgi)

has a solution w; ¢G (p;?) such that w; # 1(modp;). Indeed, if w; = 1(mod p;),
then —1 = 2w; = 2(modp;). But it is impossible, since p; # 3. Further,
we have

(-1,..., —1,w;, —1,..., —1)-(—1,..., —1,2, —1,..., —1)-
(=1,..., —1)
=(-1,...,—1,1, —1,..., —1)ed, fori =1,2,...,k.

From (1) and (1’) it follows that
1,...,1,¢5,1,...,1)ed, fori=1,2,...,k8=1,2,...
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Then
(g;l, 227“"9;")‘/117 8f=172”'°; i=1’2’0-0’k’

and so, in this case, 4, = G(XN).
Now, let N = 3%pjl-... -p3k, a > 1. In the same way as above we
infer that if a;eG(p%), ¢ =1,2,...,%, then

(3) 1,81y .98 )edy  or (—1,ay,...,a;)ed;.
If {w:}1<i<k 18 & solution of (2), then (—1, w,, ..., w;) e 4, and
(—1,2,...,2) (=1, wyy...,wp) (—1,..., —1) =(—1,1,...,1)ed,.
Hence (3) implies
(4) 1,90 ..., 9%)ed;, for s;=1,2,...;4+=1,2,...,k.
Now, let ¢ be a primitive root mod3°. Then
(5) (¢ 1,...,1) = (g9, —1,..., —1)*e4,

and

6 (¢#1,...,1)
=(—1,2,...,2) (=1, Wy, ..., W) (g, —1,..., —1)*F1eA,.
Comparing (4), (5) and (6), we infer that 4, = G(N). This, by Nar-
kiewicz [2], implies that the sequence o(1), ¢(2), ... is WUD (modN)
for every N odd.

(i) Now, let N be an even number, N = 2% pi!-...-pi¥. We have
R, = O but R, # . Indeed,

Wy(z) =a24+2+1 and 1= W,(N—1)(modXN),
80 1eR,. Now, we have
G(N) =G(2°)DG(p1")D.-.. DG (k).

We write the elements of this group in the form

Y= (YorY1s--+r1Yk)y Y =y(modpys), y,eG(pse), 8 =0,1,...,k

(here 2¢ = pg°).

In order to prove that A4, = G(N) it is sufficient to show that, for
t=1,2,...,kand s §;¢ec{1,2,...}, thereis (1,1,...,1,47,1,...,1) eR;,
where {gi},.s, generates G(p?), and, for se8,, there is (a4,,1,...,1)eR,,
where {a,,},,so generates G(2°). But this holds true if, for¢ =1, 2, ..., &,
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the congruences

(7) #*+2+1 = 1(modp;?),
(8) 2?4+x+1 = gj(modp;i) for sefl;,
(8") : 2?+2+1 = a,(mod2%) for sef,

have the solutions z; G (pi), x, G (2°%).
Congruence (7) has such solutions: z; = pgi-1.
Observe that z2+xz+1 = y*+y + 1(mod2°%) implies

2°|(@—y) (z+y+1).

Since the integer # + y + 1 is odd for z, y ¢G(2°), there is x = y(mod 2%).
So, for # =1,3,5,...,2°—1, we obtain distinet (mod2¢) values of
22+ + 1. Hence, for every a ¢G(2°), there exists x ¢G(2°) such that

2?2+ x+1 = a(mod2°?).
This solves (8’).
Consider the congruence
(9) fo(@) = 2+ o +1—g = 0(modp*),

where p +# 2, and ¢ is a primitive root mod p°.

If z, satisfies f,(x,) = 0(modp) and f'(x,) # 0(modp), then the
equation f,(x) = 0 has a solution in p-adic integers, and so, for every
integer a, congruence (9) has the solution x satisfying 2 = z,(modp)
(see [1]).

The congruence

f'(#) =22+1 = 0(modp)
has the only solution
-1
x = %—(modp).

If

—1\? -1

g # (p ) + 2= 4 1(modp),
2 2

then, for such s, congruence (9) is equivalent to the congruence f,(x)

= 0(modyp). If

#*+x+1 =y*+y+1(modp) “for z #y,x, y<G(p),

then plz+y+1 and y = p—2—1. Hence, for ze{l,2,...,p—1}, we
get (p—1)/2 integers distinct (modp) which are values of 2?4+ x4 1.
Among them may appear 0, 80 we can assume that (p —3)/2 of them
belong to G(p). '

We prove the following
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LEMMA. Let p be a prime greater than 7, ¢ — a primitive root modp,
and A = {g", g*2, ..., g"} < G(p) — a set containing at least (p—3)/2
distinct elements of G(p) such that at least one of k;, 4 = 1,2, ..., s, is odd.
Then A generates G(p).

Proof. Let G(4) be a subgroup of G(p) generated by A. For p > 1T,
we have (p—3)/2 > (p—1)/3 and cardG(4)|p—1. If G(4) # G(p), then
cardG(4) = (p—1)/2. The group {¢% ¢% ..., 9" '} is the only subgroup
of G(p) which has (p —1)/2 elements, but every element of that subgroup
has an even order. This gives G(4) = G(p).

It follows from this lemma that integers k,, k., ..., k, generate an addi-
tive group C,_, = {0,1,...,p—1}. Hence, for some integers b,, b, ...
ceey by =0, we have

8 R
Dbk =1+ (p—1)t.
t=1

Let {g"1, g*, ..., ¢"s} be the set of all distinct elements of G(p) such
that the congruence

2?4+ x+1—g% = 0(modp)
has a solution x; G (p)\{(p —1)/2}. Then the congruence
x*+x+1— gk = 0(modp®)

has also a solution ;@G (p°). If at least one of k,, ks, ..., k, is odd, then
our lemma implies the existence of non-negative b,, b,, ..., b, such that

8
[] (6% = g+®="(modp°).
i=1

Observe, first, that we can assume that at least one of k,, k,, ..., %,
is not divisible by p. Indeed, if the congruence

2 +o+1—g% = 0(modp®)
has a solution in G(p?), then the congruence
w2+ z+1—g"tP"! = 0(modp?),]
also has a solution in G'(p°). So, we can choose the integers b,, b,, ..., b, in

8
a way such that p does not divide ) b;k;. Then

|
(Z’: bikn?’(Pa)) =1,
i

and this means that gh*1t+---+%*s generates G(p°).
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Now it is sufficient to prove that among the integers k,, k,, ..., k,,
for which the congruence

w;+w+1—g"i = 0(mod p)

has a solution z ¢G(p)\{(p —1)/2}, at least one is odd. Suppose it is not
true. First we assume that p > 7. If (3/p) = —1, then 3 = ¢g***'(modp)
for some 8, and as 12+ 141 = 3(modp), so

2+z+1—g*t! = 0(modp)

has a solution in G(p)\{(p —1)/2}.
However, if (3/p) = +1, then

(((p—l)/Z)’J;(p—l)/zﬂ) _ ((p2;3>/4) _ (%)

= +1,

and we infer that

p—1\ p-—1
() + 2=+

is a quadratic rest modp. Then the polynomial x*+x-+1 gives, for =
=1,2,...,p—1, quadratic rests only. It means that, for every quadratic
rest r, there exists x e¢G(p) such that

2+ x+1 = r(modp),

4r—3
5
p

and, finally,

since the congruence
2?4241 = r(modp)
is equivalent to the congruence
(2x+1)% = 4r —3(modp).
Then also

(559)- -

for all quadratic non-rests modp.
This implies that, for every r, 1 <r<p—1,

[5)=(5)

and the element r(4r —3) is a quadratic rest (we put (0/p) = 1).
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Now, let 7' =1 (mod p). Then
4 —3r" = r'*r(4r — 3) (mod p)

is also a quadratic rest. However, if r, # r,(modp), then also r, % r;
(modp), and so, for some integer r’, the element 4 —3r' is a quadratic
non-rest. A contradiction.

For p = 5, we will show that there exists a primitive root ¢ mod 5°
such that the congruence

2’4+ 2+1—g = 0(mod 5%

has a solution zeG(5%). Indeed, since 3 is a primitive root mod 5, there
exists a primitive root g mod 5° such that ¢ = 3(mod 5) and that the
congruence

?+x+1~g = 0(mod 5%
is equivalent to
2?24+ 2+1—¢g = 0(mod 5)

if it has a solution z # (5—1)/2 =2. But 124+1+1—¢g = 0(mod 5).
Similarly, for p = 7, the primitive root mod 7 is 3, (7—1)/2 = 3, and
1241+1—3 = 0(mod 7).

From all this it follows that, for N even such that 31N, the sequence
o(1), 0(2), ... is WUD(mod N).

Let now N = 2%-3%:-p%1-...-pfk,a>1,8>1. If 6s+r(mod N)eG(N),
then either r =1 or r = 5. We have

(6s+1)2+(6s+1)+1 = 0(mod 3)
and
(68+5)2+(68+5)+1 = 1(mod 6).

Therefore, in R, there are only elements of the form 61+ 1. Since
the product of two elements of the form 6141 is also of that form, in 4,
there are only elements of the form 6l+1. In order to prove that A4,
# @(N), it is sufficient to show that there exists an integer s such that
68+ 5e¢G(N). But if 57| N and 5”t'fN, then s = N /5" satisfies our condi-
tion.

Thus, to complete the proof, it is sufficient to show that, for ¥ = 6N,
and for every non-principal character ¥ of G(N) which is trivial on 4,,
there exists no prime p such that

> J+1_
(10) 1+Zx(p 1)1)_”2 = 0.
=1 p—1
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We have

Z pit =

ZHVH )4&
p—1 “

Je=1

and, for p> 5, 1/( l/_ ) < 1. Thus, if (10) is satisfied, then p =2 or
= 3. If p = 3, then, because of 2|(3* —1)/2, we have

3% _1
) —0
x(z)
and
® 3f+1_1 hai 32j+l_1 % 1
e 3=z | — (—)3-f < 37 = —<1.

If p =2, then 3|2°*—1 and

| Sy ngon| = |y 1< Sa o1,
Jj=1 i=1 i=1

whence we see that
(.-}
1+ D z(@*—1)27"2 =0
J=1

only if, for every j, y(2¥*!—1) = —1. But this is impossible because
if 7| N, then y(2%**t'—1) = 0 and if 74N, then 7ed, and (7) = 1. In the
second case 7eA, because the congruence

2*+2+1 = 7(mod 3°)
has a solution z¢G(3°) and because the elements
(7,1,...,1),(1,1,7,1,...,1),(1,1,1,7,1,...,1),...,(1,...,1,7)

belong to 4,.
Hence the proof of our theorem is complete.

3. It would be of interest to know for which N the function

om) =D&
an
is WUD (mod N) (P 844). For v = 0, thereis g,(n) = d(n). Those numbers N
for which d(n) is WUD(mod N) were found in [2]. The answer in the
case v = 1 is given by Theorem 1. For » > 1, the following theorem gives
a partial answer:
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THEOREM 2. If (v,@(N)) =1, then o,(n) 18 WUD (mod N) if and
only if 61N. If ¢(N)|», then o,(n) is WUD (mod N,) if and only if d(n)
18 WUD (mod N) (see [2]).

The proof of the first part of Theorem 2 is analogous to the proof

of Theorem 1, and the proof of the second part — to the proof of
Corollary 1 in [2].
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