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1. Introduction. In [6] McClure and Wong studied the existence
and uniqueness of solutions to certain infinite systems of linear and non-
linear differential equations whose coefficients are not necessarily con-
stants. Under certain conditions it is proved that the system of linear
equations has a unique solution. This leads to a definition of an evolution
operator for the linear system, which is very useful in the study of the
nonlinear system.

In the present paper we are interested in some Volterra integral
equations. These equations are significant generalizations of infinite
systems considered in [6]. We establish modifications of the well-known
fixed point principle, and use this result to solve our problems.

2. Fixed point theorems. Throughout this section, E will denote
a Fréchet space and P = {p,: k = 1,2, ...} a family of seminorms which
generates the topology of E (see, e.g., [7]).

Assume that f,, f; (¢ =1,2,...) are mappings of E into itself such
that

lim f;x = fo» for every v € E

1—>00
and p(fix—f;y)<qp(x—y) for all peP, ¢>1, and 2,y € E, where ¢
(0 < g<1)is a constant. From the Cain and Nashed theorem ([2], Theo-
rem 2.2) we infer that f; ({ =1,2,...) and f, have unique fixed points
x; and 2,, respectively. Moreover,
P2 —fim0) < (1—¢q)'gp(®o—f;@,) for all pe P and i>1.
Hence
P (®;— %) < P(2; —f; %) + D (fy00 — 2,)
< (1—=9)7 qp (fo%o—fi®o) + P (f;20 — fo®0)
= (L—q)"' p(fi®o—foo)
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for all p € P and ¢ > 1. This implies that
limez, = x,.
i—»00
Now, applying the above remarks we obtain the following
PROPOSITION 1. Let X be a nonempty subset of E. Let T, G, and G,
(n =1,2,...) be transformations defined on X with the values in E such
that T{X] 48 a closed set, G,[X] <« T[X] for all n > 1,

Iim@G,z =G,» for all v X,

and p(G,x—Q,y) < qp(Tx—Ty) for all pe P, n > 1, and x,y € X, where
q (0 qg<1) 48 a constani.

Then for j = 0,1, ... there exists a unique point y; € T[X] with the
Jollowing properties:

(1) G;& = Tz for every x such that Tz = y;;

(ii) if G2 = Ta® for i =1,2, then Ta™ = Ta®;

(iii) lim T», = Tz, for all z,, x, such that Tz, =y, and Tz, = y,.

Proof. Let j =0,1,... Fix yeT[X]. Suppose that v, = G;u
(t =1,2) with Tu, =y. We have p(v,—v;) < qp(Tu,—Tu;) = 0 for
every p € P. Since P is a saturated family of seminorms on E, we get
v, = v,. Consequently, {G;z: Tz = y} contains only one element.
By the application of our remarks we conclude that the mapping
Yy {G;z: Tr = y} of T[X] into itself has a unique fixed point y; and
limy, = y,.

n—»o0o
Further, if #; is such that T»; = y;, then

Tv; = Gyo; and limTz, =limy, =y, = Tw,.
n—00 n—o0

Moreover, for #® (i =1,2) with G2 = T#¥) we obtain the ine-
quality p(Tz® —Ta®) < qp(To"V — Ta®) for each p € P, and therefore
Ta") = T+4®, which completes the proof.

PROPOSITION 2. Let X, Y be nonempty subsets of E, and let Y be convex
and closed. Suppose that T is a mapping from X to Y with T[X] closed,
and Q 18 a continuous mapping from Y into a compact subset of E. Further,
assume that F is a mapping from X X Y into T [X] satisfying the following
conditions:

(1) P(F(“’n y) — F (z,, ?/)) < ¢p(Tx,—Tx,) for all »,,2,€ X, ye¥,
and p € P, where q (0 < g < 1) 18 a constant;

(ii) p(F(w, ¥,)—F (@, ?/2)) < Gopp(Q?h—Qyz) Jor all xe X, y,,ys€ ¥,
and p € P, where C, > 0 is a constant (depending on the seminorm p).

Then there exists a point x, € X such that F(w,, Tx,) = Tx,.
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Proof. Let us fix y € Y. By Proposition 1 there exists a point u, € X
such that F(u,,y) = Tu,. Now, we consider the mapping y —> Tu, of ¥
into itself. This operator is continuous and has values in a compact subset
of E. For example, we prove that it is continuous on Y.

Let (v,) be a convergent sequence in Y, and let

limy, = y,.
n—»co

Moreover, let us put G,z = F(z, y,) and G,¢ = F(x,y,) for v € X.
Obviously, G,[X] <« T[X] and p(@,% —@,v) < qp(Tu— Tv) for p € P and
u, v € X. Since @ is continuous, by (ii) we obtain

lim @, 2 = lim F(»,y,) = F(x,y,) =G for zeX.

n—>00 n—»o0o
Therefore, by Proposition 1,

limTw, = Tu,,.
n—>00
Finally, by the Singbal fixed point theorem (see [1], p. 169, or [2],
Theorem 2.1 (b)) there exists z € ¥ such that Tu, = z. Hence Tu, = F(u,, 2)
= F(u,, Tu,), which completes the proof.

3. Statement of the problems. Assumptions (a)-(c), given below, are
valid throughout this paper and will not be repeated in the formulations

of particular theorems. Suppose that
(a) I, = [8, o©), where 8 is a nonnegative real number, and

DO = {(t’T)EIoXIo:nggt};

(b) E is a Banach space with the norm |-, and #(¥) is a Banach
algebra of all linear continuous operators from F into itself with the
norm |-|;

(e) f: Isx E — E is a continuous function.

Moreover, let us denote:

by C(1,, E) the set of all continuous functions defined on I, with
values in ¥;

by # the set of all mappings B from I, into #(E) such that ¢t B(t)
is a continuous operator-valued function (i.e., ¢t+— B(f)x is a strongly
continuous F-valued function for each z € E);

by ¥ the set of all mappings K from D, into #(E) such that (¢, 7)
> K (t, 7) is a continuous operator-valued function (in the above operator
sense) as & function of two variables and

t
|K(t, r)|<exp(fw(a)do) for each (t,7) € D,,

§ — Colloquium Mathematicum XLVII.1
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where o i8 a real: functlon (which does not depend on K) loca.lly 1ntegrable
on I o
- We shall consider the integral equations

‘.. .
(+) 90 =K@, 82+ [ K@, 7)B(r)y(v)dr,

t t
(++) (@) =-K(t’3)m+fK(t’T)B(T)y(f)df‘*'fx(tyT)f(f’y(f))df

with >0, z e B, Be, and K € ¥, where y €C(1,, E) is an unknown
function and all the integrals are the integrals in the strong sense.
In the sequel we shall use the notation

t
U(t) =f(w(t)+q|B(t)|)dr for t>s

where ¢ > 1 is a constant, B € %, and o is a function from the set ¥".

4. Main results. The set C(I,, F) will be considered as a vector space
endowed with the topology of uniform convergence on compact subsets
of I,. This topology is determined by the sequence (p,) of seminorms
defmed by

P,(y) = sup lly(t)| for y eC(I,, E),

s<i<n

and therefore (see [7], p. 24-26) C(I,, E) is a Fréchet space.

THEOREM 1. For an arbitrary x € E, Be ¥, and K € ¥ there exists
a unigque function Y p x € C(l;, E) such that

4
Y55 (1) = K (1, )8+ [ K (1, 7) B(v)Y(, 5,5, (v) 7
’ o 8
Jor all tel,.

Proof. Let z € kB, B €4, and K € ¥". Define mappings T and G as
follows: for y € C(1,, B),

(Ty)(t) = exp(— U(t)y (1),

¢
(@Y)(t) = exp(— UW)(E (@, 8)a+ [ E(t, 1)B(x)y(z)dn).
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For u,ve(C(1,, E) and s <t<m, we have ’

Tac

“fK(t’ 7)B(r)u(r)dv — f‘K(;; T)B(‘t')'v(r)dr”

i f | B(x)|exp f w(a)do) s (z) — v (¥)l &
b t ¢ T
= f |B<-r>|exp( f w(0)do) exp g f |B(0)ldo ) I(Tw)(z) — (To) (v)lldx

<ex|, foto do) sup -(Tw)(t) — (To) )] f | B(x)lexp(g f |B()ldo) dr

s<t<n Lo

< q-‘exp(fw(a)do) exp(qf|B(a)|da) P, (Tu— Tv)

and it follows that p, (Gu —Gv) < ¢~ ! p,,(Tu — Tw) for each n > 1. Therefore,
Proposition 1 applies to the mappings T, @, and the space C(I,, E), which
proves our theorem.
Here we use the notions of #*-space, the #* product of #*-spaces,
and a continuous mapping of the #*-space into the #*-space (see, e.g., [5]).
The set  will be considered as an #*-space endowed with the fol-
lowing convergence: (B,) is a convergent sequence if

supsup|B, (t)] < oo
..ol teO

on compa.ct subsets Q of I, and (B, (t)y(t)) converges uniformly on com-
pact subsets of I, for each y e C(I,, E).

For example, # endowed with the almost uniform convergence (i.e.,
uniform convergence on every compact subset of I,) is an #*-space satis-
fying the above conditions. Indeed; let £ be a compact set of I, and

limsup|B, (t)—Bo(t)l
n-»o Q.

Then
limsup||B, (t)z — By(t)z|l =0 for each z e E,

n—>o0 €

and therefore (Bn(i)) is ﬁniformly bounded for te Q and n > 1. Further,
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by Lemma 3.4 in [4],
lims‘gg B, (t)y(t) — Bo(t)y(t)l =0 for every y e C(I,, E),
n—o0

80 we are done.

A sequence (K,) of elements of ¥ is called convergent if (K, (t, v)y(v))
converges uniformly on 2 x Q for each compact subset 2 of I, and each
y € C(I,, E). The set ¥ endowed with this convergence is an #*-space.

THEOREM 2. Let Y, g x) be a8 in Theorem 1. Then the transformation
(@, B, K) > Y. 5 x) Jrom an £*-product E x% x ¥ into C(I,, B) is con-
tinuous.

Proof. Let 2 be a compact subset of I,. Without loss of generality
we may assume that s € 2. Moreover, denote by C(£2, F) the Banach
space of all continuous functions from 2 to F with the usual supremum
norm |||+]]].

Assume that

lim|z, —z =0, limB, =B, and IlimK, = K,,

7n—00 fn—>00 n—>00

where (z,,, B,,, K,,) e Ex# x¥ for m =0,1, ... Let
C’' = sup sup|B,(t)|.

v e
Define mappings T and G,, by
(Ty)(t) = exp(—r)y (),
(@9)t) = exD (=) (En(t, )30+ [ Eonlty 11 Bp()y(2)d1
' (m=0,1,...)

for y € C(Q, E), where

r > (C'supexp U‘w(a)da).

ten

For yeC(2,E), te 2, and n > 1 we obtain
G, ¥) (t) — (Goy) (DI
¢
< K, (2, 8)@, — Ko(t, 8)@,ll +f"Kn(t’ 7) B, (7)Y (v) — Ko(t, v) Bo(7)y (v)lldx

< ||By — 2ol | K (2, 8)| +11K, (8, 8) 2o — Ko(t, 8)a,ll +
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¢
+ f | K, (¢, ©)} 1B, (v)y(z) — Bo(v)y(v)lldr +
¢
+ [ 1K (t, 7) Bo(2)y(x) — Ko(t, 7) Bo(v)y ()| de

s
< llo, —ollsupexp (f w(0)do) +sup K, (¢, )3 — Ko(t, 7)ol +

t,7eQ

i
+supexp [ w(o)do) sub 1B, (1)y (1) — Bo(t)y (t)supt s+

ten

+ sup [|[K,(t, 7) Bo(7)y (z) — Ko(?, 'f)Bo('f)y(f)llstug) It—sl,

t,7€Q

and therefore |||G,y —Gyy||| > 0 as n — oo. Obviously,
G.[C(Q,E)] «T[C(Q2, B)] =T[C(R, B)]
and

¢
111G, % — G, v]|] < r~'C’'supexp (fw(a)da) 11T — To)||

teQ
for n > 1 and w,veC(2, E).
Consequently, by Proposition 1, there exists a unique y,, € C(2, E)

(m =0,1,...) such that 9, p x.,)lo="UYn and |l|y,—yolll >0 as
n — oo. This completes our proof.

Now, we study the existence of solutions of the nonlinear equation
(+ +) with f satisfying the assumption (c¢). The results will follow from the
fixed point theorem of Schauder type given in Section 2 as Proposition 2.

THEOREM 3. Let v € E, B e %, and K € ¥". Assume that for each h > 0
there ewists a compact subset Z, of B such that f[[0,h]x E] < Z,. Then
equation (+ +) has at least one solution in C(I,, E).

Proof. Define mappings T, @, and F by
(Ty)(t) = exp(— U®)y(?),

¢
(@v)(t) = [E(t, D)f(z, exp(U(z))y(v))dx,
4
F(u,v)(t) = exp(— U(?)) (K(t, 8)xw+ fK(t, 7)B(v)u(r)dz +

¢
+ [ K@, 0)f (v, exp(U(v)0(v)) dz)
for all y, u, v e C(1,, E).
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Arguments similar to those in the proof of Theorem 1 imply that

(1) Pu(F (4, 9) = F(v,9)) < ¢ po (Tt — To)
and . o
(2) pn(F(y’ ’M) —F(y7 'D)) < ann(qu—qv)

for all »>1 and w,v,ye€C(l,, E), where C, = exp(— U(n)). Since
y(:)— f( y(: )) is a continuous mapping of O(I,, F) into itself, @ is also
continuous.

Now, we prove that the set Q[C(I,, E)] is compact.

Let us put

¢
=U.K(t Of (v, exp(U(v)y(v))dr: y € O(I,, B)} for t>s

Further, let Z, be a compact set such that f[[0,¢]x E] < Z,. Smce
(v, #) — K (t, v)& is continuous on [s, t]x K, (K, r)w:s<v<t,weZ}
is compact in F and, consequently, the set

W, = (E(t, 7)f(z; exp(U(0))y(2)): s < v < t, y € O(L,, B

is conditionally compact. For vector-valued functions the integral mean-
value theorem may be stated as

fy('r)dr € (b—a)conv({y(tj: a<T< b},

where conv(A) denotes the closed convex hull of A. Therefore,
< (t—s)conv(W,),
and by the Mazur theorem (see [3], p. 163-164, or [7]) the set ¥, is com-

pact.
Let 2 be a compact subset of I,. Suppose that Q = [s, t]. We put

iy
I, = [ |E (%, 7)||f(z, exp( U (v) y (v)||dr,
4

2] . :
I, = [ |[(E(t) ) —E(t, 9) f(r, exp(U(2)y(v))| dr
for y € C(I,, E) and t,, t, € 2. We have

{f(z, exp(U(@)y(v): 8 <t <t,yeC(L, B} cZ

for some compact subset Z of E. Hence I, < C|{;—t,| for y € C(1,, E),
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where

¢ = diam(Z)exp(jw(a)da).
Q

Since the fﬁnction (ty v, ) — K(t, )z is uniformly continuous on
2 x 2 xZ, for any ¢ > 0 there exists a number 6 > 0 such that

I, < elt;—s8| < diam(Q)e

if |t,—%;) < é and y € C(I,, E). From the inequality
t t
IS Ets, mi(r, exp (U )y (m)de— [ Kby, 9ir, exp(U @)y (o))t
<I,+1,

for y e C(1,, E) and t,, 1, € 2 it follows that the set @[C(I,, E)] consists
of eqmcontmuous functions on Q.

Finally, by Ascoli-Arzela theorem ([3], p. 34) the set Q[C(1,, E)]
is conditionally compact in C(I,, E), and all the assumptions of Propo-
sition 2 are satisfied. Hence there exists y € C(I,, F) such that F(y, Ty)(?)
= (Ty)(t) for each t > s. Thus the proof is complete.

THEOREM 4. Assume that B e %, K € ¥, and that the function f has
the following properties:

(i) f[V] 18 totally bounded in E whenever V is bounded in I,x E;

(ii) there 13 a continuous function h: I, X I, — I, monotonically non-
decreasing in the second variable and such that ||f(t, z)| < h(t, |[z])) for t > s
and x € B,

(iii) for every r > 0 there exists a locally bounded function @,: I, — I,
such that

¢
@, (1) = rexp (f w(a)da) +

¢ ¢
+ [ exp( [ w(0)do) (| B(2Ng,(v) +h(, ¢,(v))) de

in the set I,.

Then for every = € E there ewists a solution y € C(I,, E) of equation
(++) and [ly@) < @y, (8) for t = s, where 7, = ||

Proof. Let us put

X ={yeC,, B): lly@®l

<9 (t) for t> s},
=y eC(,, B): ly@®)l <

@, ()exp(— U (2)) for t> s}
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and define the mappings 7', @, and F as in the proof of Theorem 3. Obvi-
ously, Y is a closed convex set, T[X] is complete, @ is continuous, and (1)
and (2) hold. Applying condition (i) and modifying the reasoning from the
proof of Theorem 3 we infer that the set Q[ Y] is compact.

Let us put

¢
y(t) = E(t, 8)o+ [ K (1, 7) B(z)y;(v)dr+

i
+fK(t, )f (v, exp(U(7))9a(v))dr  for t >3,

where ¥y, € X and y,€ Y. Then Ty = F(y,, y¥;) and, for any tel,, we
have

[ ¢ [
ly @)1l < lolexp ([ w(0)do) + [ exp ([ w(0)do)|B(2)]lly(z)lldz +
¢ t
+fexp(fw(a)do)||f(r, exp(U(t))y,(r))”dt
t t ¢
< IIw”eprw(a)da) +fexp(f w(a)da)lB(t)qu,o(t)dt-i-

¢ ]
+ [ exp(f w(0)do) bz, g, () dx < g, (1),

and therefore y € X. Consequently, F[X X Y] « T[X] and, by Propo-
sition 2, we obtain the assertion.

5. Final remarks. We give some remarks about applications of our
results to the theory of infinite systems of differential equations (cf. [6]).

Notice, for example, that Theorems 1 and 2 can be simply applied
to the case of the Banach space I' of all scalar sequences (x,) such that

00
D) 1@,] < oo,

n=l

Consider the infinite system

%) = Ya;y0), i=1,2,..,

J=1

with initial conditions y,;(0) = «; for ¢ > 1. Denote by I the set of all
matrices 4 = [a;] (¢,j =1,2,...) such that each a; is a continuous

funetion on I,, a;(t) =0 on I, for each ¢>1, } |a,(t)] converges uni-

f=1
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formly on compact subsets of I, for each j > 1, and the function

it Sup la‘j (t)l
is locally bounded on I,. This set can be considered with the almost uni-
form convergence, i.e.,
lim[aff] = [af)] in M
if and only if

lim supsup Y |a{™(t)—al(t)] = 0
n—oc0 $€Q j>1 i-21| Y i

on compact subsets 2 of I,.

Now, using Theorems 1 and 2 we obtain the following corollary:

For each x = (x,) in I' and A = [ay,] in M, the above infinite system
has a unique solution Y 4 = (Y15 Y2y --.) 0 the space C(1,, ). Moreover,
(@, A) > Y., 4) 18 & continuous mapping from I' XM into C(I,, 1').

Finally, notice that the second part of this corollary may be used to
show that the solution of our infinite system is a limit of solutions to finite
systems obtained from it by truncation. The results of such a type have
been obtained by the application of Gronwall’s inequality (see [6], Theo-
rem 3.1).
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