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1. Introduction and notation. In this paper E denotcs a Banach
space with a norm ||-|l, and E’ stands for the dual space of E. Let (2, #, P)
be a probability space. A random vector X: 2 - E denotes a strongly
measurable function.

LP(Q,P; E), 0<p < oo, denotes the Fréchet space (Banach space
if 1 < p < o0) of random vectors X: 2 — E for which

X

Xl = B ifp =0
=T tPTT

XN, 2 (BIXIPY < 0o if 0<p < o0, r = max {1, p},
and.
IXll, 2 esssup||X|| < oo if p = oo.
Q9

A random vector is called symmetric if P(X e A) =P(—X e A)
for every A € #z, where #; is the Borel o-algebra on E. f
A probability measure on (E, #5) defined by

p(A) =P(Xed) for every A e %y

is called the distribution law of X. The characteristic functional of a measure
v on (B, #;) is defined by '

v (2') = f exp[i{a’, @>]»(dz) for every o' € H'.
E

A random vector X is gaussian if, for each 2’ € &', {2’ +X) is a gaus-
sian random variable. X is pregaussian if there exists a gaussian measure y
on (¥, #z) such that

- 1
7 (a') = exp [— > B, X>’]-
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Let (8, 2, u) be a measure space with u(8) = 1. A mapping
W: 2 L(Q,#,P)

is called a gaussian random measure on (8, X, u) if
(a) for every sequence 4,, A,,... of disjoint sets from X we have

WO 4.) = 3 W),

where the series converges with probability 1;

(b) for every sequence A4,, ..., 4, of disjoint sets from X' the random
variables W(4,), ..., W(4,) are independent;

(c) for every A € X, W(A) has a normal distribution with mean 0
and variance u(A).

Let f: 8 — E be a simple function,

f = jmi-l.d,;,
=1

where A; € X are disjoint, 2;€E, i =1,...,n. For each B e X2 we set

[faw = }:‘.fn,-W(AinB).
B

i=1

f (-)dW is a linear operator on the vector space of E-valued simple

functions on § with values in the space of gaussian random vectors in
I*}(Q,P; E). If E is of type 2 (see Section 5 for the definition of Banach
spaces of type 2), then, as Hoffmann-Jergensen and Pisier [b] have
shown, there exists a unique extension of this operator on L*(8, u; E).
Using the idea of Urbanik and Woyczyniski [13] we define a random integral
of vector-valued functions with values in any Banach space.

The purposec of this paper is to study the class of random integrable
functions with respect to a gaussian random measure. Section 2 of this
paper contains the basic properties of random integrable functions. In
Section 3 we give some counterexamples which show the difference between
the random integral for Banach space valued functions and the random
integral for Hilbert space valued functions. Section 4 contains a charae-
terization of random integrable functions. In Section 5 we study proper-
ties of the random integral which depends on geometry of a Banach space.
In Section 6 we investigate some properties of the space of functions
which are integrable with respect to a gaussian random measure.

2. A gaussian random integral of vector-valued functions. Let
(S, X, u) be a measure space u(S) = 1 and let W be a gaussian random
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measure on (8, X, u). Let E be a Banaeh space and let f: § — E be a simple

function, i.e.
n
f = ZwiIAi’

1=1

where A; e X are pairwise disjoint and z; € E. For every B el we set

[faw = imiW(AinB).
B

tm=1

Definition 2.1. A strongly measurable function f: 8§ — F is said
to be integrable with respect to a gaussian random measure W if there exists.
a sequence of simple functions f,: § — K such that

(1) fo =>f in p,
(2) [f,dW converges in P for every B e .
B

Then for B € 2 we set
[ faw = plim [f.aw.
B B

This integral is uniquely determined. Definition 2.1 is the extension
of the definition of Urbanik and Woyeczynski (cf. [13]) of random integrak
in the case of Banach valued functions.

Let £(8, W; E) c L°(8, u; E) denote the set of all integrable func-
tions with respect to the gaussian random measure W. The set £ (S, W; E)
is & vector space. Moreover, ¥ (8, W; E) is a Fréchet space with F-norm

fllle = Wflo+ || f7aW ||,
S

and the set of simple functions is dense in Z(S, W; E).
The following properties are immediate consequences of Definition 2.1
and we omit their proofs.

ProposITIiON 2.1. (1) For every f,g e £ (8, W; E) and B € X we have
[(f+9)aW = [faW + [ gdW P-a.e.
B B B

(2) Let E, F be Banach spaces and let A: E — F be a continuous linear
operator. If fe £ (8, W; E), then Af e (8, W; F) and

A [faWw = [AfdW P-a.e. for each Be X.
B B

(2') In particular, if o' € E', then for every fe ¥ (8, W; E) we have
o'y f>eL(8, W;R) and

(o', [faW) = [<a', [>AW P-a.e.
B B
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(3) If fe (8, W; E), then for every B.€ X' we have f1p e £ (8, W; E)
and

[faw = [f1gaw.
B .
PRrOPOSITION 2.2. If (f,) = L*(8, u; E) is a sequence of simple functions
such that f, —f in p and [f,dW converges in P, then f € Z(8, W; E).
§

Proof. Let B € 2. The random vectors

[(fa—fw)dW and [ (fo—fm)dW
B S\B

are independent and symmetric. By the inequality
P(| ftumtm)aW] > e) <32 [t tmaw] > o

for every ¢ > 0, we infer that [f,dW converges in P.
B

In the sequel we shall use some other F-norms in the space # (S, W; E),
equivalent to the original one. First we prove the following lemma:

LemMMA 2.1. Let X, be symmeiric gaussian random vectors 8such
that X, - X in P. Then X is a symmelric gaussian random vector and, for
every p, 0 < p < oo,

E|X,—X|P >0 a8 n—> oco.

Proof. Let ¥ be a symmetric gaussian random vector. Combining
the results of [3], [4] and [7], we infer that for every p, ¢ € (0, o) there
exists a constant C,, (dependent only on E) such that

(1) (BIYIP)? < O, (B[ X9,
Inequality (2) from I.5 in [8] applied to || X | gives

E|| Y|P
P(ITIE > (BT > (1 —1)? (—E—'l% > (L—t)* 0L

for every i € (0, 1). Putting ¥ = X, and ¢ = 1/2 we get
: 1
(2) P(IIX,,II’ > ?EHI,,H’) >47'0;; = const for every neN.

By the assumptions of the lemma and inequality (2) we have
sup E |.X,|* < oo,
and, by (1), "
sl.;l.pEuX,,Il” < oo for each p>1.
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By the Fatou lemma, E||X|” < oo for each p > 0. Let p € (0, )
be fixed. Using the Holder inequality we infer that for each ¢ > 0

E|\X,-XIF< [ IX,—X¥dP+ [ |X,—X|PdP
(lXp—-XIP>e} I1Xp— XIP <0}
< CENPYX, — X7 > PP e

where
0 =supE|X,|P*.
n

Therefore, E|| X, — X|? — 0 a8 n — oo. The fact that X is gaussian
is trivial.

By Lemma 2.1 and Definition 2.1 we obtain immediately

COROLLARY 2.1. Let for every f € £(8, W; E)

Al Z 1fle+ ]| [faW] , 0<p< oo.
8

Then for every p €(0, o) the F-norm |||-]|l, 48 equivalent to [||-]|l,.
Remark 2.1. In the definition of |||-|||, the first component |||,
cannot be omitted in general (see Example 3.3 in Section 3).

3. Some counterexamples. The examples given in the sequel show
that the basic properties of the space (8, W; E) and of the random
integral, which are evidently fulfilled in Hilbert spaces, are not usually
fulfilled in arbitrary Banach spaces.

ProrosiTION 3.1. Let

= 2“’1&14”7
ne=l
where x, € B, A, e X are disjoint, n =1,2,... and |J A, = 8. Then
0 n=1
feZ (8, W; E) if and only if D x,W(A,) converges a.s. Moreover,
n=1
[faw = > o, W(4,).
S n=1

The proposition is an immediate consequence of Proposition 2.2 and
the theorem of Ito and Nisio [6].

Let 8 =[0,1], £ = %), p(dt) = dt and let W be the random
measure generated by the Brownian motion w; on [0, 1], i.e. W((s, t])
= w,—w, for 8,te[0,1].

Example 3.1. There exist a Banach space E and f: [0, 1] — E strongly
measurable such that

sup If(t)l =1 aend f¢2([0,1], W; E).

tefo,1]
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Let E =17, 1<p <2, and let, for 1 <r < 2p~?,

00
c = Zn".

n=1

Let ¢,, €, ... be the standard Schauder basis in I?. Let
to=0, 1, =0 i7" for n>1.
We set
() =e, for te(t,_,,%]1, f(0)=e,.

Then ||f(t)|| = 1 for each ¢ € [0, 1].
We assume that f € (8, W; I?). Then, by Proposition 3.1,

flde = je,,(w,n—w,n_l) a.8.
0

n=1

Moreover,

- 00 X ™
n=1 n=1 '

o0
- 1
= E'lec plgz n'?/z = 00,

n=1

where X is a gaussian random variable, X ~ A4°(0, 1). This gives a con-
tradiction.

Example 3.2. There exist a Banach space E and a sequence (f,)
c 2Z([0,1], W; E) such that

sup|if,(®)l =0 a8 » >
tefo,1)

1
and [f,dW diverges in P.
0

Let B =17, 1<p<2 and let ¢, e,, ... be the standard Schauder
basis in I¥. We set

n
Fal®) = 07" Yl ynpm(®)  for te(0,1],
k=1

fa(0) = n""Pe,,

where 0 <r <1—p/2.
We obtain

”ff"dW” (v"’ | Wit — Wig—1y/nl ) E|X|Pn'™PRP" 500 asm-—>oo
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(X ~#(0,1)) and
sup|lf,(t)] = n~"" = 0.
‘

Example 3.3. There exist a Banach space E and a sequence (f,)
< £([0,1], W; E) such that

1
[fudW >0 in P
0

and (f,) diverges in p.
Let E =1?, p > 2, and let ¢,, ¢,, ... be the standard Schauder basis
in I*. We set

n
Fa®) = 0% 3 61 sympm(®)  for te(0,1],
k=1

fa(0) = n"Pey,
where 0 <r < p/2—1.
We have

E ” flf,,dW”p =n!"PPHEIXP >0 as n—>
0

(X ~A4(0,1)) and
If, ()l =™ - oo for each te[0,1].
Example 3.4. There exist & Banach space and E a function f
an £ ([0,1], W; E) such that for each r> 0

1

[if@iras = oo.

0

Let E =17, p > 2, and let ¢,, €,, ... be the standard Schauder basis
in [P, Let
¢, = (log'?n)loglogn if n >3 and ¢, = ¢, = 1.
We have

c = Z(ncf,)" < oo.
n=1
Let
1 n
=0, 1, =—c—2(kc,2,)'l for n>1.
k=1
We set

f@) = chenl(tn_l,tn](t)-



190 J. ROSINSKI AND Z. SUCHANECKI

By Proposition 3.1 we have

1 ©0 0o
E|f faw|" = Y e2Biw,—w,_ P = BIX1P 3 oB(t,—1,,)"" < oo,
0 n=1 =l
where X ~ 4°(0, 1), but

1

f"f(t)]l'dt = S‘G;(tn—tn—l) = j(”w:_r)_l = 00

0 ==l nw=l
for each r > 0.

4. Characterization of elements in (8, W; E). In this section the
characterization of elements in #(8, W; E) is given. As some applica-
tions of this characterization we study the definition of random integral
in the sense of Pettis and we give a description of Z(8, W;I?) for
1<p < oo

Suppose that f € Z(8, W; E); then for each z’' € £’

' f>e2(8, W; R) = L*(8, u; R)

and, by Corollary 5.31 in [12], f is integrable in the sense of Pettis.
LeMMA 4.1. If f: 8 — E 18 strongly measurable and integrable in the
sense of Pettis, then there exists a sequence of finite o-algebras X, « Xy c ...
.. © 2 such that
E,(f|2,) = f strongly p-a.s.,

where B, (f| Z,) denotes the weak conditional expectation.

Proof. Notice first that if X’ is a finite sub-o-algebra of X, then it
is generated by atoms 4,,..., 4, and

B, (f1Z) = D) [n(A)]™ [fduly,,

4
where [ fdu denotes the Pettis integral and we take [u(4,)]" =0 if
Ag o
p(4;) = 0.
Now, since f is strongly measurable, for each » € N there exists a dis-
joint covering of 8 by sets A%, ..., 4; , A% ., € 2 such that
kﬂ
w(U 47) > 127
and .
diam {f(47)} = sup {Ilf(®) —f(s)l: t,8 € AT} < 27"
for ¢ =1,...,k,.
Write

I

2

l.
oAy ..ey Allcly Allcl+l)
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and
Z, = o(4d7, ...,A;,‘”,A: Ae’Z, ;) forn>=2.

Then X, < 2; = ... < ¥ and 2, is finite for each ».
Let n € N be fixed and let B,, ..., B, €Z, be generators of Z,, i.e.

n

B, are pairwise d18]0mt U B; = 8 and each set in X, is the union of
i=1

some number of sets B;. Let

I={1<i<r,: Bich;‘}.
We have
[#(B)1™ [ fau e conv (f(By))
(see, e.g., [11], Theorem 3.1) anﬁi for each ¢ € I there exists a j, 1 < j < k,,
such that B; < A}, which gives
diam{conv( f(B,))} diam {f(4])} < 2™
Thus for each ¢ € I and s € B; we have
7o)~ tuBaT? [ i <27
i

and
p (LI) B)>1-2"".
We obtain .
 s{if-E(1Z) <27 >1-27",
and this completes the proof.

THEOREM 4.1. A sirongly measurable function f: 8 — E is integrable
with respect to a gaussian random measure W associated with u if and only if

(1) f(w’,f)’dp< oo for each a' e B',
(ii) (p(a: ) =exp[—4% f ', fY*du] is the characteristic functional of some
measure on (E, Bg).

Proof. It follows non-trivially from (i) and. (u) that f i8 integrable:
with respect to W, i.e. there exist simple functions f, such that f, —f
in x and [f,dW converges in P (Proposition 2.2). By (i), f is Pettis inte-

§

grable (see [12], Corollary 5.31) and, by Lemma 4.1, there exists a sequence:
of finite o-algebras 2, < 2, ... €« X2 such that °

E,(f12,) = f strongly p-a.s.

Put f, = E,(f|2,). The functions {f,} are simple and we have to
prove that ff,dW converges in P. First we prove that [f,dW are partial
S S

sums of some series of independent gaussian random vectors.
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Let
X, = [fidW, X,= [f,dW— [f,_,dW for n>2.
8 S S

Since W is gaussian by the linearity of random integral, it is sufficient
1o prove that

El', X >, X,,> =0 for each 2',y' € E’' and n # m.
We have
E<2', X, <Y's Xp> = B [&, fuo—FaDdW [, fn—Fmr)dW
S S

= f(‘v'afn_fn-1> Y fn—Im-1>8u =0,

since {f,, 2,} is a martingale in E.

We infer that
n
[fuaw = ' x,
S i=1
and {X.;},>, are independent symmetric gaussian random vectors.
Let 2’ € E'. We have

. ’ P1 —E . ’
Eexp [z <w ,% Xi>] = Fexp[z <w ,Sff,‘dW>]
=exp[-—% f(a:’,f,,)’d,u]»exp[—-;— f(a:’,f}’dy] as n — oo.
S S

By (ii) and by the theorem of Ito and Nisio [6], the sums

DX, = J Fa@W

i=1
converge a.s. This completes the proof.

COROLLARY 4.1. Let the function f: 8 — E be strongly measurable. Then
JeZ(S, W; E) if and only if f is pregaussian (as a random element on the
probability space (8, X, pu)).

The random integral with vector-valued functions may be defined
in the sense of Pettis (see also [15]). Namely, a strongly measurable func-
tion f: § — FE is weakly integrable with respect to a gaussian random measure
W if for each 2’ € E' the integral f x',f>dW exists and for each Be X
there exists a random vector X5 such that for each «' € B’

@', Xpy = [<a', AW as.
B
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In view of Theorem 4.1 we obtain

COROLLARY 4.2. A function f: 8 — E is weakly integrable with respect
to a gaussian random measure W if and only if fe £(8, W; E).

Proof. Indeed, let f be weakly integrable. Then
[ <@ fap < oo
S
and

) 1
o(z') =exp[—§ f(m',f)zdy]
S

is the characteristic functional of the random vector Xg. Conditions (i)
and (ii) of Theorem 4.1 are fulfilled.

COROLLARY 4.3. Let f: 8 =17, where f = (f,)us1y 1< P < 0o, be
measurable. Then f is integrable with respect to a gaussian random measure
W if and only of

2 ([Haauf" < oo.

n=1 S

The corollary is a consequence of Theorem 4.1 and Vakhania’s charac-
terization of covariance operators of gaussian measures in IP (see [14]).

5. Random integral in the spaces of type and cotype 2. Let E be
a Banach space. We say that FE is of type p, p € (1, 2] (cotype q, ¢ € [2, o))
if for a Rademacher sequence (r,) and for every (z,) < E the following
1mphcat10n holds (see [4] and [10]):

if 2’ lz,||” < oo, then Z‘ ¥, T, converges a.e.

n= l n=1

(if 2 r,Z, converges a.e., then 2 Iz, I < oo).

Fo; elxample, the spaces L? and lz a.lre of type 2 and cotypepif 2 <p < o0
and of type p and cotype 2 if 1< p < 2.

ProPosITION 5.1 (cf. [4] and [10]). The following statements are equi-
valent:

(a) E is of type p (cotype q).

(b) There exists a constant C, (C,) depending only on E such that

o] Sl <o, S
f=1 t=1
(Y It < 0,8 I XN
=1 i=1

13 — Colloquium Mathematicum XLIII.1
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Jor every n>1 and z,, ..., x, € E, where (n,) 18 a sequence of independent
normally dzstmbuted rcmdom vam'ables with mean 0 and variance 1.

(c) If 2 2, lI” < oo, thenzn,,x converges a.s.

n=1

(ef 2 Na &, COMVETges a.s., then Z‘ [l 12 < o),
n=1 n=1

where 7, are as in (b).

The gaussian random integral, as a linear operator on L*(S, u; E)
(£ of type 2), was constructed by Hoffmann-Jergensen and Pisier [5].
The next proposition follows immediately from Proposition 5.1 (see
also [6]).

PROPOSITION 5.2. Let E be a Banach space of type 2. Then
L*(8, u; E) =« 4(8, W; E).
Moreover, the identity embedding
I: I*(8, u; B) >%(8, W; B)

is continuous and there exists a constant C such that for each f € L*(8, u; E)

E| gf faw|'<c §f IR dp.

PROPOSITION 5.3. Let E be a Banach space of cotype 2. Then
L8, W;B)c L*(S, u; E).

Moreover, the identity embedding
I: 2(8,W;E)->L(S,u;E)

18 continuous and there exists a constant C such that for each f € £ (8, W; E)
(3) JWfPau < CE| [faw .
8§ N

Proof. Let F be of cotype 2. By Proposition 5.1 we obtain (3) for
each simple function f. If f € #(8, W; E), then there exists a sequence
(f,) of simple functions such that f, — f in u and f f,dW converges in P.
Therefore, by Lemma 2.1,

f(f,, f)@W -0 in I*(R,P; E) as n, m — oo,

and so f, — f in L*(8, u; B).
This shows that inequality (3) holds for each fe 2(S, W; E) and
that the identity embedding of # (8, W; ) in L*(8, u; E) is continuous.
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COROLLARY b.1. If E is of cotype 2, then ¥ (S, W; E) is the Banach
space with the norm

A, = (B]| fraw|?)*, »>1
s

(111, are equivalent as norms on ¥ (8, W; E) for each p > 1).

For example, we consider the space Z (8, W; 1) for 1 < p < 2. Let
F be a Banach space and p > 1. By I?(F) we denote the Banach space of
all sequences (z,) = F for which

a2 (3 o) < oo.
n=1

COROLLARY 5.2. Let 1 < p < 2. The space £ (8, W;1?) is isomorphic
and isometric with 17 (L*(8, u; R)).

Proof. If f = (f,) eZ(8, W;1?), then, in view of Corollary 4.3,
Ie lp(Lz(S7 M3 R))

Conversely, if f e1?(L*(8, u; R)), then by the inequality

flfnlpdﬂ < (ffﬁd,u)m for 1<p<2
3§ s

we have fe L°(8, u; 1) and, by Corollary 4.3, f e Z(8, W;1?). Since I”
is of cotype 2 (1 <p<2), by Corollary 5.1 the space Z(8, W;I?) is
a Banach space with the norm
_ i|p\Up
111l —(Ellsfden ).
We have

NflE =B ||Sf faw |, = ;E | 1w = ;»[E (sf S W)

o 2 1280 = 0 Moz omy:
n 8

=e
¢, = (21:)“’2( f I(blpexp [—i;] dw).

We infer that the operator I(f) = c;’p f forms an isometry between
£(8, W; %) and 1?(L*(8, u; R)).

6. Some questions concerning the space ¥ (8, W; E). Examples 3.1
and 3.4 show that bounded functions are not always integrable with respect
to a gaussian random measure and that f e # (8, W; E) does not always
imply that f e L"(8, u; F) for some r > 0. Corollary 5.1 shows that if F
is of cotype 2, then £ (8, W; E) is the Banach space.

where



196 J. ROSINSKI AND Z. SUCHANECKI

In this section we answer the following questions:
For which Banach spaces E are the following conditions satisfied:

(A) L=(8, u; E) =« Z(8, W; E),
(B) (8, W; E) U L' (8, u; E),

r>0
(C) (8, W; E) admits a Banach norm equivalent to ||[-[[[,?
In this section we assume that u is atomless.
The following proposition answers the question (A).
PROPOSITION 6.1. The following conditions are equivalent:
(a) L*(8, p; B) =« 2(8, W; E);
(b) E i8 of type 2.
Proof. Let L*(S, u; E) =« (S, W; E). We have to show that E
is of type 2. Suppose that this is not true. Then there exists a sequence

(a"n) < E’
o0
D |t < oo,
n=1

such that the series J z,7, diverges a.e., where 7, are independent
n=1

random variables, , ~ N(0,1), n =1, 2, ... (Proposition 5.1).

Let
¢ =D llw,I*.
n

Since u is atomless, there exists a partition 4,, 4,, ... of § such that
A, are disjoint, 4, € X and u(4,) = ¢ |z, n =1,2,...
We set

F=D . lu(4,)17"1,,.
A=l
We have ||f(t)]| = ¢"* for each ¢t € 8, and so f € L®(8, u; E).
On the other hand, the series

D, (4,17 W (4,)

diverges a.e. and, consequently, f ¢ # (S, W; E), which gives a contradic-
tion (Proposition 3.1).
The inverse implication of this proposition follows from Proposition 5.2.
The following proposition answers the question (B).
PROPOSITION 6.2. The following conditions are equivalent:

(a) 2(8, W; E) = U L"(8, p; B);

p>0

(b) E i3 of cotype 2.
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In order to prove this proposition we need the following lemma:
LEMMA 6.1. If (a,) i8 a sequence of real numbers such that

and, for each &> 0,

Proof. Let

7; = max {'n: ngai<2M}, ny = max{/n: M< ﬁ: a¢<2M}.
i=1

i=ng _1+1

We have 0 =ny<n;, <my< ...
Let b; = (klog’k)™* for my_, <j < my, k =1,2,... Then

S‘a.,‘b,, = Zo.:'(lr,log"'k)‘1 Zk a; < 21!12.0:(Iclog’k)"l < o©

n=1 k=1 J=ng_y+1 k=1
and
o oo bt
Za,,b}," ='2(klog2k)“+' 2 a;
n=1 k=1 j=ngp_1+1
> M D (klogk)™'** = oo for £> 0.
k=1 '

Proof of Proposition 6.2. Suppose that F is not of cotype 2.

Then there exists a sequence (r,) = E such that ) z,7, converges a.e.,
n

where 7, are independent, 7, ~N(0,1), and D |jz,/* = co (Proposi-
tion 5.1). »

The sequence (||z,|) is bounded. Indeed, the convergence of the series
2 2,7, implies that, for each 2’ € E',
n

E<.’L", annn>2 =2<‘v'7 wn>2 < o9,

80 (x,) is weakly bounded and, thercfore, by the Banach-Steinhaus theorem
(«,) is strongly bounded.
By Lemma 6.1 there exists a sequence b, “x 0 such that

- Dbl < o
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and, for each ¢ > 0,

D)0l = oo
n
Let

b= bl

and let (4,) = Z be a partition of 8 such that u(4,) = d~'b, |z, |I*.
Setting

F@) = D) a,[u(4,)171,, (1),

n=1

we infer that
f faw =an[y(A,,)]“”W(An) converges a.e.
S n

Thus feZ (8, W; E).
Let r > 0. Then

JUArdp = D) ol [p(4)T "2 p(4,) = 577 Y 01 g, |F = co.
8 n n

The inverse implication of this proposition follows from Proposition 5.3.

The following proposition answers the question (O).

PROPOSITION 6.3. The following conditions are equivalent:

(a) Z(8, W; E) admits a Banach norm equivalent to |||||lo;

(b) E is of cotype 2.

In the proof of this proposition we use the following lemma:

LEMMA 6.2. Suppose that E is not of cotype 2. Then there exists a sequence
of simple functions (f,) such that bf fo@W are bounded in P and

inf||f,(8)| > oo a8 n — oo.
8esS

Proof. Since F is not of cotype 2, then there exists a sequence (v,) c B
such that }'n,, converges a.s. and
n

D) llgllt = oo
n

(9, ~A#°(0,1) independent). Put
' n
a, = D llzf
f=1
Then a, — co.
Let n € N be fixed and let 4,, ..., 4, be a partition of § such that
p(d;) =alllel? i =1,..., 0.
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We write A
N s
We have =
f FaOW = a}f? 2 ;| 2, W (4;) = Zwm‘ in law,
=1
and for each se 8
Ifa(®)] = al? > 00 as n — oo.

Proof of Proposition 6.3. Suppose that there exists a Banach
norm |-] on £ (8, W; E) equivalent to |||-]||, (which is equivalent to |||-]||o)-
Thus there exist r, and 73, 0 <r, < %, 72> 0, such that S, > 8, o §;,
where

= {f: Ifl <1},
= {: NflllL < r}y
8, = {f: Ifl <rs}.

Suppose, to the contrary, that F is not of cotype 2. Then by Lem-
ma 6.2 there exist simple functions f, such that

b, = inSfllﬁu(‘?)ll —> 00
8€
and [f,dW are bounded in P.
S

Put g, = b;;lfm n = 1,2,..
We have

infllg,(s)| =b, > co and [g,dW >0 in P.
8€S S

Let 4,, ..., A, be a partition of 8 such that u(4,) < r,.
We write i =g,1,,¢ =1,...,k Then

1
1R 1o < m(4;) <§ .
Let N be a positive integer such that for cach n > N

E fgndﬂ .|<—r1

Take fixed n» > N. We have
I
E"fh;‘dWH _E | fgndWi E“fg,,dwl' 1,
I A;

B!, = 187 lo+ B| [ B2aW || < 1,
S

whence
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so h? €8, for each ¢ =1, ...,k and » > N. Consequently,
k

kg, = k“Zh}' eS8, and Kk !7,9,€8,,
i=1

whence k~'r,g, € §;. We obtain a contradiction, since

inf|[k~r,9,(s)| = o0 as m — oo.
8eS

COROLLARY 6.1. £ (8, W; E) = L*(8, u; E) if and only if E is iso-
morphic to a Hilbert space.

This follows from the result of Kwapienn [9], which states that E
is isomorphic to a Hilbert space if and only if Z is of type 2 and of co-
type 2, and from Propositions 6.1 and 6.2.

Remark 6.1. Chobanian and Tarieladze (Theorem 4.1 in [1]) have
shown that if there exists a p > 0 such that each pregaussian measure
on a Banach space E has the p-th strong order, then E is of cotype 2.
From Theorem 4.1 and Proposition 6.2 we obtain:

If each pregaussian measure u on E has some p-th strong order, then E
18 of cotype 2.

This strengthens the above-mentioned result of Chobanian and Tarie-
ladze [1].
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