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Let V be a nonnegative function on R? such that the form

B(f) = Y_11:fI% + V12 5|?

is densely defined. This form is closed, so there exists a uniquely determined
positive definite operator A such that (Af, f) = B(f) and D(A/?) = D(B).
Let E be the spectral measure of A. If F is a bounded Borel measurable
function we write

F(A)f= [F(\)dE(\)f.
Let
Fiy(z) = F(tz).
By the spectral theorem F(A) is bounded on L2. It is an interesting problem
to give sufficient conditions on F and A which imply boundedness of F(A)

on LP, p # 2. In the case A = —A the classical Hormander multiplier
theorem asserts that if for the Sobolev norm || - || z7(4) we have

sup || ¢ Fil| gy < 00,
t>0

for some ¢ > d/2, ¢ € CP(R4), ¢ # 0, then F(A) is bounded on L7,
1 < p < 0o0. A similar result was obtained for A being a homogeneous
sublaplacean on a homogeneous Lie group G by A. Hulanicki and E. M. Stein
(cf. [2]) (with large q) and M. Christ [1] (¢ being half the homogeneous
dimension of G).

It has been noticed that by transferring this and similar theorems to
groups by means of representations one obtains multiplier theorems for
Schrédinger operators with potentials which are sums of squares of poly-
nomials.

On the other hand, methods of [3] yield multiplier theorems for some
Schrédinger operators (e.g. if d = 1). To apply this or other standard
methods one needs a Holder condition on the kernels of the semigroup e*4
like
(+) le*41(z) — et41(z')] < Ct=2/|z — o]
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for an @ > 0. This, however, does not hold in the case d > 2and 0 # V €
C2.

The aim of this paper is to provide a proof of Theorem (1) below. The
proof uses the ideas of [3], but while there Zo’s lemma plays a role and one
needs something like (*), here we make a better use of L2-estimates and
the Calder6n-Zygmund decomposition, which allows us to dispose of the
smoothness requirement on the kernels of the semigroup.

For s > 0 we define

1Ay = JIF@PA+ |0’y dw, H(s)={f € L*:||flln) < o},
where ~ is the Fourier transform.

(1) THEOREM. If for some ¢ > 0, a non-zero ¢ € C°(R4) and a constant
C we have

(2) leFella(a+1)/24e) < C

then F(A) is of weak type (1,1) and bounded on LP for 1 < p < oo.
Proof. First observe that by (2), ||F||r~ < C'C, so

(3) IF(A)l|La,L2 < C'C.

Consequently, by interpolation and duality, it is enough to prove that F(A)
is of weak type (1,1). By the Trotter formula (see [4])

(4) 0 < e *(z,y) < p(z - ),

where p;(z) = (47t)~%/2 exp(—|z|?/4t). Formula (4) implies the following
inequalities: ’

(5) fe"‘"‘(m, y)e?l==vl dz < CeC’t

(6) [le*A(z,y)|*dz < Ct=4/2,

(7) sup [e*4(z,y)| < Ct~%/2,
z,y

for some constant C and all s,t > 0, y € R4,
We write

MKl = max{ sup [IK(z,9)I(1+ |z = u1)* dy,
sup [1K(z, (1412 - y))* e} .

(8) LEMMA. Ifsupp F C [-1,4],€ > 0, a > 0, then

IF(A)lla £ CF||m(d+1)/24e+a)
where C .is independent of F and A.
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Proof. Put K()\) = F(—log(A))A~1. We have
| K |l a(a+1)/24e+0) < Crll Fllnga+1)/2+e4a)»  supp K C [e74,¢].
Let K(A) =3 R(n)ei™, e, = et “e=4, whence F(A) = K(e~4)e=4 =
Y K(n)e,. Inequalities (6) and (5) allow us to use (3.1) of [3] to obtain
llealla £ Ca(1 + [nf)*/2*e
s0

IFlla < C2 Z |K (n)|(1+ |n|)?/2+e
<Gy (Z |K(n)*(1+ |n|)d+2a+l+c)l/2 (Z(l + |n|)-1-c)1/2

< Cal|K||H((d+1+¢)/240) < CallFllH((d+1)/2+4a) »
which ends the proof.

(9) LEMMA. For every m > 0 there exist N,C > 0 such thatif F € H(N),
supp F' C [-1,4], then

|[F(A)(z,y)| < Cl|Fllan (1 + |z - y))™™
for all z,y, and A.
Proof. Put G(A) = F(A)e*, N =d/2+ m + 1. Of course ||G||g(n) <
CallFllzrny- By Lemma (8), IG(A)llm < C3IGlluny and by (4) and (7),
(1 + | = )™ F(A)(=, )] = | [G(A)z,)e™A(s,4)(1+ |& - yl)™ ds|
< [IG(A) (=, 9)l(1+ |z — s|)™e=4(s,y)(1 + |5 — y|)™ ds
< IG(A)llm sup pr(2)(1 + |2])™,
and the lemma follows. |

Of course (2) holds for every ¢ € C°(R;). We fix ¢ and 9 such that
@, ¢ are in C*®(R), suppy C [1/4,2], ¥ ¢(2%%z) = 1 for every z > 0, and
supp ¥ C [-1,1], with ¢(z) =1 for z € [0,1/2]. Let
Fe(N) = @(22*Q)F(X),  ¥r(X) = 9(22k)).
Choose a < €. There exists C such that

(10) (e Fe) (A, £ C,
(11) JIF(A)(=z,9)(1+ 27|z - y|)*dz < C,
(12) [¥k(A)|(2,y) < C27*(1 4 27F|z — y|)~41.

To see this we recall some simple properties of dilations. Let §;z = tz and
6:f = foéb;. We have

Ogx Ay = 272k 4,  where Ar=-A+2"%Vo O .
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Hence
Fk(A) = 52-hfk($4k)62k where f'k = Fyo 52-2:: .

Replacing € by ¢ — a and applying (8) to Fi and A; we obtain (11). The
proof of (12) is similar but uses (9). (10) is a consequence of (11) and (12).

Let f be an integrable function. We fix the Calder6n-Zygmund decom-
position of f at height A, that is, functions f; and g and cubes @; such
that

f=g+> fi, suwppficQi, [Ifl<CNQil,

9l SCA, QinQj=0fori#j, ) |Qil <Clfli/A.

Let Q7 be the ball with the same center as @; and radius 2 diam Q;. We put

ki = [logy(diamQ;)]. Let h be an integrable function such that supph C
{z : |z| £ 1} = B. We have

J 1F(Ah(2)dz < |lhllsup [ |Fu(A)l(z,y)dz
|z)>2 VEB 1152

<lhflzrsup [ |Fe(A)l(z,y)dz
lz—y|>1

< 2%|hflzisup [|Fk(A)l(z,9)(1+27%|z - yl)* dz
y L]

< C2%||h| s
and
Y. [ IF(Ahi(z)dz < CY 2% Al < Collhl|Ls -
k<0 |z|>2 k<0
Using dilation we obtain
(13) Y [ IF(A)filz)dz < Cllfilles -
i<ki (Q7)¢

(14) LEMMA. There ezxists C such that

1> wk.-(A)f.-"; < CMIfllis -

Proof. First observe that there exists Cp such that if @ = {z :
max |z;| < 1} then for every z

sup(1+ |z —y|)"? ! < Co inf (14 |z —y|)~%¢".
yeEQ yeQ

Consequently, using dilations we obtain, for all ¢,
(15) sup (1+27% |z — y)~%"! < Cp inf (1+ 275 |z — y|)~ 9.
VEQ; VEQ;
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Fix i. Let yp be the center of Q;. By (15)

[k (Afil(z) < f2741+ 275z - )~ fil(y) dy
< ACHQil2754(1 + 27 |z — gol) =47
<AC; [27R4(1+27R |z — )™ xqu () dy
= ACa(2754(1+ 27| - )79 # xq@.)(2) -

If h € L2, then
(h, 27591 4275 - )79 + xq,)
= I(2-kid(1 + 2-kil : I)-d-l * h, XQ-‘)I < Cy(Mh, XQ.‘)

where M is the Hardy-Littlewood maximal operator. The last inequality
is the well-known property of the Hardy-Littlewood maximal operator (see
for example Stein [5], Theorem 3.2). Since M is bounded on L2,

|(h,z¢k.~(A)fi)|S Cs (thz '\Xos) < Cllhllza || Y Axa Lo
But || 3 Axq: |12 = ¥ A2|Qi] £ CA||f||L1, which ends the proof.

Clearly, if j < k, then ¥ F; = 0 so ¥(A)F;(A) = 0. Similarly, if j > k
then vx(A)F;j(A) = Fj(A). Therefore

F(A)f
=Y Fi(A)fi + F(A)g

t,J

=Y (X RS+ Y Fi(A)f) + F(A)g

i j<k; i>ki

=30 3 A+ LB~ 3 Fa(Abn(Afi+ FlAg

i j<k;

=2 F(Afi+ F(A)(E Yr(A)fi + g) - 3 Fu (AW (A

i j<ki

Putting S = |J@Q7, by (13) and the properties of the Calderén-Zygmund
decomposition we have

{z: |2 X Fias| > ys}| <i1s1+ /) ] |3 Fiaf
i j<ki i j<k

< Cliflla /A +(CIA) 2 £l
< Clifller /A
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Next, by (14),

| S warsi 4], < Al

and by (3)

{2 : |Fa) (T vriarsi +9)| > a3

< (C/'\2)|| Y ¢k(Afitg ;
< C'MIfllza /A3* = Clifllza /.

Finally, by (10),

{2 :| X Fu(@yn()fi| > a3} < 3| T Fu (s, /2
< (C/N) T Wfiller < Clflles < Cllfllza/A,

which ends the proof of (1).
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